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Abstract 

This paper proposes the transformations for the dynamic fixed effects logit models. First, 

the transformations construct the valid moment conditions (including the stationarity 

moment conditions) for the case without explanatory variable. Combining portions of 

the valid moment conditions gives just the first-order condition of the conditional 

maximum likelihood estimator proposed by Chamberlain (1985). Next, the valid 

moment conditions are constructed by using the transformations for the case with 

strictly exogenous continuous explanatory variables, when the number of time periods 

is greater than or equal to four. This implies that for the dynamic fixed effects logit 

model with strictly exogenous continuous explanatory variables, the estimators can be 

constructed which are consistent and asymptotically normal and whose convergence 

rates equal the inverse of the square root of the cross-sectional sample size. In addition, 

the small sample properties of the GMM estimators using these moment conditions are 

investigated by using Monte Carlo experiments. 
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1. Introduction 

 Incorporating dynamics into the binary choice models is one of the issues which 

attract the interest of econometricians, where the logit specification is often used and 
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the micro datasets are often dealt with. Example includes the analyses on the household 

brand choice and the female labor force participation, etc. The dynamics allows for the 

persistence of an event in past, the logit specification is simple and tractable in terms of 

the structure, and nowadays the micro datasets are much more accessible than before. 

In many cases, the micro datasets available have the panel structure where the number 

of individuals is large but the number of time periods is small. 

 The problem which is unavoidable in dealing with panel data models is the 

treatment of the individual heterogeneity. In this paper, the exploration for the panel 

logit models incorporating dynamics is conducted for the case where the individual 

heterogeneity is treated as the fixed effect instead of the random effect. This is because 

the former treatment is more flexible than the latter one in terms of the model 

specification. In the exploration, the incidental parameters problem considered by 

Neyman and Scott (1948), which pertains to the fixed effects models, is solved for the 

dynamic fixed effects logit models, using the fairly traditional approach. It is shown that 

this approach gives rise to the (asymptotically normal) root-N consistent estimators (in 

which the convergence rate equals the inverse of the square root of the cross-sectional 

sample size) for the dynamic fixed effects logit models. The two types of dynamic fixed 

effects logit models are explored, namely that without explanatory variable and that 

with strictly exogenous continuous explanatory variables. 

 For the dynamic fixed effects logit model without explanatory variable (hereafter 

the simple dynamic fixed effects logit model), Chamberlain (1985) proposes the 

(asymptotically normal) root-N consistent estimator. 1  The conditional maximum 

likelihood estimator (hereafter CMLE) for the simple dynamic fixed effects logit model 

(which needs four or more time periods) is obtained after ruling out the fixed effects in 

the manner analogous to that used in obtaining the CMLE proposed by Chamberlain 

(1980) for the static fixed effects logit model.2 

 In contrast, for the dynamic fixed effects logit model with strictly exogenous 

continuous explanatory variables, it can be said that no root-N consistent estimator has 

been proposed until now, although some alternative approaches (solving or alleviating 

the incidental parameters problem) have been applicable to and/or proposed for this 

                                                   
1 See also Hsiao (2003, pp. 211-216), Baltagi (2009, pp. 242-244), and Kyriazidou (2010), etc. on this issue. 
2 The genesis of the CMLE for the static fixed effects logit model is Rasch (1960, 1961). The first-order condition 

of the CMLE for the static fixed effects logit model is also derived by Bonhomme (2012) and Kitazawa (2012) in 
separate ways. 
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model: First, although the estimator proposed by Honoré and Kyriazidou (2000) as an 

extension of the CMLE proposed by Chamberlain (1985) for the simple dynamic fixed 

effects logit model is consistent and asymptotically normal with respect to the 

cross-sectional size with the number of time periods being fixed, it is not the root-N 

consistent estimator by reason of using the kernel weight.3 Second, although the 

bias-corrected estimators proposed by Carro (2007), Bester and Hansen (2009), 

Fernández-Val (2009), Hahn and Kuersteiner (2011), and Yu et al. (2012) aim at 

obtaining the estimators as unbiased as possible for the moderately large number of 

time periods, they are never the root-N consistent estimators.4 Third, although the 

pseudo CMLE proposed by Bartolucci and Nigro (2012) is the root-N consistent 

estimator for the pseudo true values of the parameters of interest instead of the true 

values of the parameters of interest, which is created by using the approximation of the 

dynamic fixed effects logit model which is a modified version of the quadratic 

exponential model of Bartolucci and Nigro (2010), it is adamantly asserted that this 

estimator falls into the category of the approximation estimator instead of the root-N 

consistent estimator for the true dynamic fixed effects logit model with strictly 

exogenous continuous explanatory variables. 

 Different from the methods proposed until now, in this paper, the incidental 

parameters problems in the dynamic fixed effects logit models are solved by eliminating 

the fixed effects after the models are transformed in order that the expressions 

including the fixed effects are separated out as the additive terms. Eliminating the fixed 

effects gives the valid moment conditions for constructing the root-N consistent 

estimators for the dynamic fixed effects logit models. 

 The valid moment conditions for the simple dynamic fixed effects logit model are 

derived in the following manner: First, the model is transformed into the simple linear 

panel data models with additive fixed effects. Next, the error-components structures 

holding between the logit model and the transformed linear panel data models give the 

valid moment conditions (including the stationarity moment conditions), by using the 

methodology analogous to that proposed by Ahn (1990) and Ahn and Schmidt (1995) for 

the simple ordinary dynamic panel data model. In addition, it is shown that the 

                                                   
3 Chintagunta et al. (2001) apply the estimator proposed by Honoré and Kyriazidou (2000) to the household 

brand choice model on the yogurt purchases. 
4 In Fernández-Val (2009), the analysis on the female labor force participation is conducted by using various 

bias-corrected estimators. 
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first-order condition of the CMLE proposed by Chamberlain (1985) can be rewritten as 

the combinations of some of these moment conditions. 

 Likewise, the derivation of the valid moment conditions for the dynamic fixed 

effects logit model with strictly exogenous continuous explanatory variables is as 

follows: First, the model is transformed in order that the logit probabilities composed of 

the fixed effects and the explanatory variables are separated out as the additive terms. 

Next, the valid moment conditions, which need four or more time periods, are obtained 

by applying a variety of the hyperbolic tangent differencing transformation (hereafter 

HTD transformation) proposed by Kitazawa (2012) for the static fixed effects logit 

model to the transformed forms of the model. This implies that the root-N consistent 

estimators are dug up for the dynamic fixed effects logit model with strictly exogenous 

continuous explanatory variables. 

 The generalized method of moments estimator (hereafter GMM estimator) 

proposed by Hansen (1982) provides the dynamic fixed effects logit models with the 

root-N consistent estimators. For the simple dynamic fixed effects logit model, it is 

recognized that there are the root-N consistent estimators other than the CMLE 

proposed by Chamberlain (1985), while for the dynamic fixed effects logit model with 

strictly exogenous continuous explanatory variables, the presence of the root-N 

consistent estimators is manifested in the case of four or more time periods. 

 Now, a window is opened into the sense of stagnation in which the recent 

researches on the dynamic fixed effects logit model with strictly exogenous continuous 

explanatory variables seem to be packed in the atmosphere of relinquishing the pursuit 

of the root-N consistent estimators. The window is opened by dint of the extremely 

traditional reaction. It seems reasonable to say that Hahn’s (2001) suggestion is no 

longer applicable to the case of four or more time periods. The suggestion states that the 

root-N consistent estimation is infeasible in more general specifications in the dynamic 

fixed effects logit model and accordingly the substantial improvement over the 

estimator proposed by Honoré and Kyriazidou (2000) is unlikely.5  To the best of 

author’s knowledge, the root-N consistent estimators are for the first time proposed for 

the dynamic fixed effects logit model with strictly exogenous continuous explanatory 

variables, in this paper. 

                                                   
5 It is thought that Hahn (2001) discusses the infeasibility of the root-N consistent estimator under a special 

initial condition for three time periods. 
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 Some Monte Carlo experiments not only investigate the small sample behaviors of 

the GMM estimators proposed in this paper for the dynamic fixed effects logit models 

but also reinforce the corroboration of the root-N consistency of the GMM estimators.  

 The rest of the paper is as follows. In section 2, both dynamic fixed effects logit 

models are presented: that without explanatory variable and that with the strictly 

exogenous continuous explanatory variable. Then the root-N consistent estimators (i.e. 

the GMM estimators) are constructed using the valid moment conditions for both 

models. In section3, some Monte Carlo results are reported for the GMM estimators. 

Section 4 concludes. 

 

 

2. Models and estimations 

 In this section, the root-N consistent estimators are constructed for the dynamic 

fixed effects logit models. First, the process for constructing the valid moment 

conditions is exhibited for the model without explanatory variable, where the dynamic 

fixed effects logit model is transformed into the linear panel data models and then the 

methodology analogous to that proposed by Ahn (1990) and Ahn and Schmidt (1995) for 

the ordinary simple dynamic panel data model is applied to the error-components 

structures holding between the simple dynamic fixed effects logit model and the 

transformed linear panel data models. As a matter of course, the stationarity moment 

conditions are proposed for the simple dynamic fixed effects logit model. In addition, it 

is shown that the first-order condition of the CMLE proposed by Chamberlain (1985) 

can be assembled by using these moment conditions. Secondly, the extension of the 

above-mentioned transformations is applied to the model with the strictly exogenous 

continuous explanatory variable in order to construct the valid moment conditions by 

using the methodology analogous to that proposed by Kitazawa (2012) for the static 

fixed effects logit model. This is very intriguing, because the root-N consistent 

estimation can be achieved for the dynamic fixed effects logit model with strictly 

exogenous continuous explanatory variables. Thirdly, one type of the root-N consistent 

estimators (i.e. the GMM estimator) is introduced, which uses the valid moment 

conditions mentioned above. 

 Throughout the paper, subscripts i  and t  denote the individual and the time 
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period, respectively. It is assumed that the number of individuals N →∞ , while the 

number of time periods T  is fixed. 

 

2.1. Simple model and transformations 

 The binary dependent variable it
y  for the simple dynamic fixed effects logit model 

is specified as follows: 

 
, 1( , )it i i t ity p y vη −= + , for 2 t T≤ ≤ ,    (2.1.1) 

 with 1

1E[ | , , ] 0t

it i i iv y vη − = ,     (2.1.2) 

where 
, 1 , 1 , 1( , ) exp( ) / (1 exp( ))i i t i i t i i tp y y yη η γ η γ− − −= + + +  with i

η  and γ  being the 

fixed effect and the parameter of interest respectively, it
v  is the disturbance, 1iy  is the 

initial value of the binary dependent variable, and 
1

1 , 1( , , )
t

i i i tv v v
−

−= …  with 1iv  being 

empty.6 

 The logit probability , 1( , )i i tp yη −  with which 1
it

y =  can be also written in the 

following form: 

  
, 1 , 1( , ) ( ) ( )i i t i i t ip y f y gη η η− −= + ,     (2.1.3) 

  with ( ) ( ) ( )
i i i

f h gη η η= − ,     (2.1.4) 

   ( ) exp( ) / (1 exp( ))
i i i

g η η η= + ,    (2.1.5) 

   ( ) exp( ) / (1 exp( ))
i i i

h η η γ η γ= + + + .   (2.1.6) 

The form (2.1.3) with (2.1.4) - (2.1.6) implies the logit specification of the linear AR(1) 

(autoregressive model of order 1) regression form considered by Al-Sadoon et al. (2012) 

for the dynamic binary choice panel data model with fixed effects.7 

 Based on the facts above, the simple dynamic fixed effects logit model is 

transformed into the following two types of simple panel data models with additive fixed 

effects: 

  
, 1 , 1(1 ) ( )it i t it i t i ity y y y g wδ η− += − + + , for 2 1t T≤ ≤ − ,  (2.1.7) 

  with 1

1E[ | , , ] 0t

it i i iw y vη − = ,     (2.1.8) 

and 

  
, 1 , 1(1 ) (1 ) ( )it i t it i t i ity y y y hδ η ω− += − − − + + , for 2 1t T≤ ≤ − ,  (2.1.9) 

with 1

1E[ | , , ] 0t

it i i iy vω η − = ,     (2.1.10) 

                                                   
6 This type of description is used by Kitazawa (2012) for the static fixed effects logit model and by Blundell et al. 

(2002) for count panel data model. 
7 Al-Sadoon et al. (2012) propose the root-N consistent estimators for the exponential distribution specification 

of the linear AR(1) regression form for the dynamic binary choice panel data models. The origin of the regression 
form is Pesaran and Timermann (2009). 
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where exp( ) 1δ γ= −  and then both of the forms (2.1.7) and (2.1.9) are linear with 

respect to δ , although δ  is inevitably above ( 1)− . The former separates out ( )
i

g η  

as the additive fixed effect, while the latter separates out ( )
i

h η . The newly defined 

disturbances it
w  and it

ω  satisfy the conditional moment restrictions (2.1.8) and 

(2.1.10), respectively. In this paper, the transformations (2.1.7) and (2.1.9) are referred 

to as the “g-form” and “h-form” respectively. The derivations of (2.1.7) with (2.1.8) and 

(2.1.9) with (2.1.10) are shown in Appendix A. 

 

2.2. Mean and covariance restrictions and moment conditions 

 In this subsection, the moment conditions are constructed by utilizing the 

relationships between the disturbances in the original dynamic fixed effects logit 

specification and those in its transformations, based on the conditional moment 

restrictions in the transformations. The methodology used is analogous to that Ahn 

(1990) and Ahn and Schmidt (1995) for the ordinary simple dynamic panel data model. 

 Firstly, the moment conditions based on the g-form are derived. The conditional 

moment restrictions (2.1.8) give the following mean and covariance restrictions: 

  E[ ] 0
it

w = , for 2 1t T≤ ≤ − ,     (2.2.1) 

  1E[ ] 0
i it

y w = , for 2 1t T≤ ≤ − ,     (2.2.2) 

  E[ ] 0
is it

v w = , for 2 1s t≤ ≤ − ; 3 1t T≤ ≤ − ,   (2.2.3) 

By using the relationships after replacing the unobservable variables it
w  and is

v  with 

the observable variables 
, 1 , 1(1 )it it i t it i tu y y y yδ − += − −  and is

y  respectively, the 

following 3T −  and ( 2)( 3) / 2T T− −  unconditional moment conditions for estimating  

γ  consistently are obtained: 

 E[ ] 0
it

u∆ = , for 3 1t T≤ ≤ − ,     (2.2.4) 

 E[ ] 0
is it

y u∆ = , for 1 2s t≤ ≤ − ; 3 1t T≤ ≤ − ,   (2.2.5) 

where ∆  is the first-differencing operator such that , 1it it i t
u u u −∆ = − .8 

 Next, the moment conditions based on the h-form are derived in the same manner 

as that for the g-form. The conditional moment restrictions (2.1.9) give the following 

mean and covariance restrictions: 

  E[ ] 0
it

ω = , for 2 1t T≤ ≤ − ,     (2.2.6) 

  1E[ ] 0
i it

y ω = , for 2 1t T≤ ≤ − ,     (2.2.7) 

                                                   
8 In this paper, the observable variable is defined as the variable constructed using data and parameters of 

interest, as is similar to that in Ahn (1990) and Ahn and Schmidt (1995). 
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  E[ ] 0
is it

v ω = , for 2 1s t≤ ≤ − ; 3 1t T≤ ≤ − ,   (2.2.8) 

By using the relationships after replacing the unobservable variables it
ω  and is

v  

with the observable variables , 1 , 1
(1 ) (1 )

it it i t it i t
y y y yυ δ − += + − −  and is

y  respectively, 

the following 3T −  and ( 2)( 3) / 2T T− −  unconditional moment conditions for 

estimating γ  consistently are obtained: 

 E[ ] 0
it

υ∆ = , for 3 1t T≤ ≤ − ,     (2.2.9) 

 E[ ] 0
is it

y υ∆ = , for 1 2s t≤ ≤ − ; 3 1t T≤ ≤ − ,   (2.2.10) 

 The derivations of the moment conditions (2.2.4) and (2.2.5) based on the g-form 

and the moment conditions (2.2.9) and (2.2.10) based on the h-form are shown in 

Appendix B. 

 The moment conditions (2.2.4) and (2.2.5) for the g-form and (2.2.9) and (2.2.10) for 

the h-form are linear with respect to δ , implying that the linear estimations for δ  

can be conducted by using these moment conditions. 

 It might be said that the moment conditions (2.2.5) and (2.2.10) correspond to the 

standard moment conditions in the ordinary dynamic panel data model, which are 

proposed by Holtz-Eakin et al. (1988) and Arellano and Bond (1991), while the moment 

conditions corresponding to the additional non-linear moment conditions proposed by 

Ahn (1990) and Ahn and Schmidt (1995) are the redundancies (see Appendix B). 

 In this paper, the moment conditions (2.2.5) and (2.2.10) are referred to as the 

standard moment conditions based on the g-form and h-form for the simple dynamic 

fixed effects logit model, respectively. 

 

2.3. Stationarity in the simple dynamic fixed effects logit model 

 It is evident that the stationary state can be defined easily in the simple dynamic 

fixed effects logit model, by paying due notice to the form of the logit probability (2.1.3) 

with (2.1.4) - (2.1.6). When the initial condition of the dynamic fixed effects logit model 

(2.1.1) is written as 

 1 1( ) / (1 ( ))
i i i i

y g f vη η= − + ,     (2.3.1) 

 with 1E[ | ] 0
i i

v η = ,      (2.3.2) 

the binary dependent variable it
y  is stationary: 

 E[ | ] ( ) / (1 ( ))
it i i i

y g fη η η= − ,     (2.3.3) 
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which is a probability.9 

 In this case, two types of the 3T −  stationarity moment conditions are 

constructed: those based on the g-form are 

  , 1
E[ ] 0

i t it
y u−∆ = ,   for 3 1t T≤ ≤ − ,   (2.3.4) 

while those based on the h-form are 

  , 1
E[ ] 0

i t it
y υ−∆ = ,   for 3 1t T≤ ≤ − .   (2.3.5) 

The derivation of the moment conditions (2.3.4) and (2.3.5) is shown in Appendix C. 

 It might be said that the moment conditions (2.3.4) and (2.3.5) correspond to the 

stationarity moment conditions in the ordinary dynamic panel data model, which are 

proposed by Arellano and Bover (1995) and discussed in Ahn and Schmidt (1995) and 

Blundell and Bond (1998). 

 

2.4. Relationship with the CMLE proposed by Chamberlain (1985) 

 Based on the sequential four time periods (i.e. 2t − , 1t − , t  and 1t + ), the CMLE 

proposed by Chamberlain (1985) for the simple dynamic fixed effects logit model is 

obtained by maximizing the following objective function with respect to γ : 

1

N

iti =∑ ℓ ,       (2.4.1) 

 with 
2

, 1 , 2 , 1 , 2 , 1( ) ( ( ) ln(1 exp( ( ))))it it i t i t i t i t i ty y y y y yγ γ− − + − += ∆ − − + −ℓ .10 (2.4.2) 

The CMLE for γ , which needs four or more time periods as is seen from (2.4.1) with 

(2.4.2), is a root-N consistent estimator. The detail on this estimator is shown in Hsiao 

(2003, pp. 211-216). For this case of four time periods, it is corroborated that the CMLE 

is asymptotically efficient under the condition that 2( ) 1ity∆ =  and 
2

, 2 , 1( ) 1i t i ty y− +− =  

(see Appendix D).11 

 It is of interest that the first-order condition for (2.4.1) with (2.4.2) can be written 

as the following plain sum of the moment conditions (2.2.4), (2.2.5) for 2s t= −  

multiplied by ( 1)− , and (2.2.10) for 2s t= −  multiplied by ( 1)− : 

  
, 2 , 2E[(1 ) ] 0i t it i t ity u y υ− −− ∆ − ∆ = .     (2.4.3) 

 Further, if the binary dependent variable 
it

y  is stationary as is specified in 

                                                   
9 It is assumed that 

it
v  is not empty when the stationarity is imposed on the dependent variable 

it
y . 

10 The maximization problem is written referring to Hsiao (2003, pp. 211-216), Baltagi (2009, pp. 242-244), and 
Kyriazidou (2010). 

11 Alternatively, according to Wooldridge (2011), it can be also said that the CMLE is asymptotically efficient in 
the class of estimators putting no assumption between the initial conditions on the dependent variables and the 
fixed effects. 



Design: 2013/04/30, Revision: 2013/08/26, Kyushu Sangyo University 

10 
 

previous subsection, the first-order condition (2.4.3) can be rewritten as the following 

plain sum of the stationarity moment conditions (2.3.4) and (2.3.5): 

  
, 1E[ ( )] 0i t it ity u υ−∆ + = .      (2.4.4) 

 These imply that the first-order condition of the CMLE proposed by Chamberlain 

(1985) for the simple dynamic fixed effects logit model can be written as the sums of the 

moment conditions based on the g-form and h-form.12 The proof is shown in Appendix 

E. 

 

2.5. Extension to the model with the strictly exogenous continuous explanatory variable 

 In this subsection, the model is extended to that accompanied by the strictly 

exogenous continuous explanatory variable. The discussion now reaches the most 

interesting part, which, to the best of author’s knowledge, is the region previously 

unaddressed by researchers. It will be seen that the root-N consistent estimators are 

present for the dynamic fixed effects logit model with strictly exogenous continuous 

explanatory variables. The valid moment conditions are presented, which construct the 

(asymptotically normal) root-N consistent estimators, such as the GMM estimator. 

 The binary dependent variable it
y  for the dynamic fixed effects logit model with 

the strictly exogenous continuous explanatory variable it
x  is specified as follows: 

  
, 1( , , )it i i t it ity p y x vη −= + ,  for 2 t T≤ ≤ ,   (2.5.1) 

with 1

1E[ | , , , ] 0t T

it i i i iv y v xη − = ,     (2.5.2) 

where 
, 1 , 1 , 1( , , ) exp( ) / (1 exp( ))i i t it i i t it i i t itp y x y x y xη η γ β η γ β− − −= + + + + +  with i

η  

being the fixed effect and γ  and β  being the parameters of interest, 1iy  is the initial 

value of the binary dependent variable, 1

1 , 1( , , )t

i i i tv v v
−

−= …  with 1iv  being empty, and 

1( , , )T

i i iTx x x= … . 

 As is similar to the simple model discussed in previous subsections, the logit 

probability 
, 1( , , )i i t itp y xη −  with which 1

it
y =  can be also written in the following 

form: 

  
, 1 , 1( , , ) ( , ) ( , )i i t it i it i t i itp y x f x y g xη η η− −= + ,    (2.5.3) 

  with ( , ) ( , ) ( , )
i it i it i it

f x h x g xη η η= − ,    (2.5.4) 

   ( , ) exp( ) / (1 exp( ))
i it i it i it

g x x xη η β η β= + + + ,  (2.5.5) 

                                                   
12 In the old versions of Buchinsky et al. (2010) and Bonhomme (2012), the first-order condition of the CMLE for 

the simple dynamic fixed effects logit model is derived under the setting considered in Hahn (2001) for three periods, 
by using the methods different from that proposed in this paper. The former is related to Johnson’s (2004) results. 
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   ( , ) exp( ) / (1 exp( ))
i it i it i it

h x x xη η γ β η γ β= + + + + + , (2.5.6) 

 Different from the case for the simple dynamic fixed effects logit model, , 1
( , )

i i t
g xη +  

and , 1
( , )

i i t
h xη +  are separated out in order that equation (2.5.1) with (2.5.2) is 

transformed into the following g-form and h-form for the dynamic fixed effects logit 

model with the strictly exogenous continuous explanatory variable, respectively: 

 
, 1( , )it i i t itU g x Wη += + , for 2 1t T≤ ≤ − ,    (2.5.7) 

with 1

1E[ | , , , ] 0t T

it i i i iW y v xη − = ,     (2.5.8) 

, 1 , 1 , 1

, 1 , 1 , 1

(1 ) (1 ) exp( )

(1 ) exp( ),

it it it i t it i t i t

i t it i t i t

U y y y y y x

y y y x

β

δ β

+ + +

− + +

= + − − − − ∆

− − − ∆
  (2.5.9) 

and 

 
, 1( , )it i i t ith xη +ϒ = + Ω , for 2 1t T≤ ≤ − ,    (2.5.10) 

 with 1

1E[ | , , , ] 0t T

it i i i iy v xη −Ω = ,     (2.5.11) 

 
, 1 , 1 , 1

, 1 , 1 , 1

(1 ) exp( )

(1 ) (1 ) exp( ),

it it i t it i t i t

i t it i t i t

y y y y x

y y y x

β

δ β

+ + +

− + +

ϒ = + − ∆

+ − − ∆
  (2.5.12) 

where exp( ) 1δ γ= − . The newly defined disturbances 
it

W  and 
it

Ω  satisfy the 

conditional moment restrictions (2.5.8) and (2.5.11), respectively. The derivations of the 

g-form (2.5.7) with (2.5.8) and (2.5.9) and h-form (2.5.10) with (2.5.11) and (2.5.12) are 

shown in Appendices F and G, respectively. 

 The valid moment conditions are obtained by eliminating the fixed effect 
i

η  from 

the g-form and h-form. By utilizing the relationship between the hyperbolic tangent 

function and the logit probability (i.e. a variety of the HTD transformation), which is 

presented by Kitazawa (2012) with the aim of obtaining the valid moment conditions for 

the static fixed effects logit model, the conditional moment conditions for estimating γ  

and β  consistently are obtained on the basis of the g-form and h-form as follows:  

  
2

1E[ | , , , ] 0t T

it i i i iU y v xη − =ℏ , for 3 1t T≤ ≤ − ,   (2.5.13) 

with 

, 1

, 2 , 1 , 1 , 1tanh((1 / 2)( ( )))( 2 ),

it it i t

i t it i t it i t it i t

U U y

y x x U y U yγ β

−

− + − −

= −

− − + ∆ + ∆ + −

ℏ
 

        (2.5.14) 

and 

2

1E[ | , , , ] 0t T

it i i i iy v xη −ϒ =ℏ ,  for 3 1t T≤ ≤ − ,   (2.5.15) 

  with 
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, 1

, 2 , 1 , 1 , 1tanh((1 / 2)( (1 ) ( )))( 2 ).

it it i t

i t it i t it i t it i t

y

y x x y yγ β

−

− + − −

ϒ = ϒ −

− − + ∆ + ∆ ϒ + − ϒ

ℏ
 

(2.5.16) 

The derivations of the moment conditions (2.5.13) with (2.5.14) (which are based on the 

g-form) and the moment conditions (2.5.15) with (2.5.16) (which are based on the 

h-form) are shown in Appendix H. 

 What the moment conditions (2.5.13) with (2.5.14) and the moment conditions 

(2.5.15) with (2.5.16) make immediately clear is that the root-N consistent estimators 

can be constructed for the dynamic fixed effects logit model with strictly exogenous 

continuous explanatory variables, when the number of time periods is greater than or 

equal to four. 

 

2.6. Root-N consistent estimators using the valid moment conditions 

 This subsection reviews one type of the root-N consistent estimators using the valid 

moment conditions proposed in previous subsections for the dynamic fixed effects logit 

models. The GMM estimator proposed by Hansen (1982) is obtained by minimizing the 

quadratic form comprised of the sample analogues of the moment conditions and a 

weighting matrix. 

 Any set of the valid unconditional moment conditions for the dynamic fixed effects 

logit models can be collectively written in the following 1m×  vector form: 

  E[ ( )] 0
i

ϕ θ = ,       (2.6.1) 

where m  is the number of the moment conditions and θ γ=  for the simple dynamic 

fixed logit model (i.e. (2.1.1) with (2.1.2)), while ( )θ γ β ′=  for the dynamic fixed 

effects logit model with the strictly exogenous continuous explanatory variable (i.e. 

(2.5.1) with (2.5.2)). 

 The optimal GMM estimator GMMθ̂ , which is based on the moment conditions 

(2.6.1), is obtained by minimizing the following quadratic form with respective to θ : 

 ( )
1

1
ˆ( ) ( ) ( )ϕ θ θ ϕ θ

−

′ Θ ,      (2.6.2) 

with 
1

( ) (1/ ) ( )
N

ii
Nϕ θ ϕ θ

=
= ∑ ,     (2.6.3) 

 1 1 11

ˆ ˆ ˆ( ) (1/ ) ( ) ( )
N

i ii
Nθ ϕ θ ϕ θ

=
′Θ = ∑ ,    (2.6.4) 

where 1θ̂  is any consistent estimator for θ . It is well-known that the following 

relationship holds for the optimal GMM estimator: 

 
1/2 1 1

GMM 0 0 0 0
ˆ( ) N(0, ( ( ) ( ( )) ( )) )

d

N D Dθ θ θ θ θ− −′− → Θ ,   (2.6.5) 
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where 
00

( ) ( E[ ( )] / ) |
i

D θ θθ ϕ θ θ =
′= ∂ ∂  and 0 0 0( ) E[ ( ) ( ) ]

i i
θ ϕ θ ϕ θ ′Θ = , with 0θ  being the 

true value of θ . The relationship (2.6.5) is a representation of the (asymptotically 

normal) root-N consistent estimator. 

 For the simple dynamic fixed effects logit model (i.e. (2.1.1) with (2.1.2)), the two 

types of GMM estimators are constructed on the basis of the g-form: the GMM(g-STD) 

estimator using the moment conditions (2.2.4) and (2.2.5) and the GMM(g-SYS) 

estimator using (2.2.4), (2.2.5) and (2.3.4), while those are constructed on the basis of 

the h-form as well: the GMM(h-STD) estimator using the moment conditions (2.2.9) and 

(2.2.10) and the GMM(h-SYS) estimator using (2.2.9), (2.2.10) and (2.3.5). In addition, 

the GMM(FOC-o) and GMM(FOC-s) estimators are defined, which use the moment 

conditions (2.4.3) and (2.4.4) for 3 1t T≤ ≤ − , respectively. 

 The GMM(g-STD) and GMM(h-STD) estimators and the GMM(g-SYS) and 

GMM(h-SYS) estimators correspond to the GMM estimator using the standard moment 

conditions only and that using both of the standard and stationarity moment conditions, 

in the framework of the ordinary dynamic panel data model, respectively. The moment 

conditions used in the GMM(FOC-o) estimator are the first-order conditions of the 

CMLE for the simple dynamic fixed effects logit model without assuming the stationary 

dependent variable, while the moment conditions used in the GMM(FOC-s) estimator 

are those assuming the stationary dependent variable. 

 It should be noted that since all the moment conditions used in the GMM 

estimators defined above are linear with respect to δ  and ln( 1)γ δ= + , the parameter 

of interest γ  can be estimated without using the non-linear optimization. 

 For the dynamic fixed effects logit model with the strictly exogenous explanatory 

continuous variable (i.e. (2.5.1) with (2.5.2)), the GMM estimators are constructed by 

using the valid unconditional moment conditions generated from the valid conditional 

moment conditions (2.5.13) with (2.5.14) based on the g-form and (2.5.15) with (2.5.16) 

based on the h-form. Accordingly, it is asserted that the discovery of the root-N 

consistent estimators be conducted for the dynamic fixed effects logit model with strictly 

exogenous continuous explanatory variables. 

 

 

3. Monte Carlo 
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 In this section, the finite sample behaviors of the root-N consistent estimators for 

the dynamic fixed effects logit models with no explanatory variable and with the strictly 

exogenous continuous explanatory variable are investigated by using some Monte Carlo 

experiments. In the data generating processes (hereafter, DGP) for both models, the 

dependent variables are designed to be stationary. The experiments are implemented by 

using the econometric software TSP version 5.1 (see Hall and Cummins, 2009). Another 

objective of the Monte Carlo experiments is to score the insurance goal which places on 

a firm basis the presence of the root-N consistent estimators for the dynamic fixed 

effects logit model with strictly exogenous continuous explanatory variables. 

 

3.1. Model without explanatory variable 

 The DGP is as follows: 

 
, 11 if ( , )

0 otherwise

i i t it

it

p y
y

η ζ− >
= 


, 

 
1

1

1 if ( )

0 otherwise

i i

i

q
y

η ζ>
= 


, 

, 1 , 1 , 1( , ) exp( ) / (1 exp( ))i i t i i t i i tp y y yη η γ η γ− − −= + + + , 

( ) 1/ (1 (1 exp( )) / (exp( )(1 exp( ))))
i i i i

q η η η η γ= + + + + , 

~ U(0,1)
it

ζ ; 2~ N(0, )i ηη σ . 

In the DGP, values are set to the parameters γ  and 
2

ησ . The experiments are carried 

out with cross-sectional sizes 1000N = , 5000  and 10000 , numbers of time periods 

4T =  and 8 , and number of replications 10000
N

R = . 

 Table 1 and 2 are the illustrations of the Monte Carlo experiments on the root-N 

consistent estimators mentioned in previous section for the simple dynamic fixed effects 

logit model when 4T =  and 8, respectively. 

 The size alleviations of bias and rmse (root mean squared error) for the all GMM 

estimators are found as N  increases, which are reflections of the root-N consistency of 

the GMM estimators. 

 The downward biases for the GMM(g-STD), GMM(h-STD), GMM(g-SYS), and 

GMM(h-SYS) estimators are discernible, especially for the high values of the 

persistence parameter γ  and the variance 
2

ησ  which generates the fixed effects. 

These GMM estimators are presumably afflicted with the weak instruments problem 

studied by Bound et al. (1995) and Staiger and Stock (1997), which results from the 
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usage of the standard moment conditions (2.2.5) and (2.2.10) employing the lagged 

dependent variables dated 2t −  and before as the instruments for the g-form and 

h-form dated t , respectively. 

 For the more persistent γ  and the smaller N  (i.e. 2.5γ =  and 1000N = ), the 

GMM(g-STD), GMM(h-STD), GMM(g-SYS), and GMM(h-SYS) estimators when 8T =  

behave worse than those when 4T = . This is probably due to the excessive use of the 

standard moment conditions when 8T = , where the weak instruments problem is 

salient. 

 The weak instruments problem is frequently seen in analyses using the ordinary 

dynamic panel data model and the count panel data model (see Blundell and Bond, 1998, 

and Blundell et al., 2002, etc.). 

 As is similar to the Monte Carlo experiments carried out by Blundell and Bond 

(1998) for the ordinary dynamic panel data model, it can be said that the additional 

usage of the stationarity moment conditions improves the small sample performances of 

the GMM estimators, especially for the high value of the persistence parameter γ, as 

long as comparing the results of the GMM(g-STD) and GMM(h-STD) estimators with 

those of the GMM(g-SYS) and GMM(h-SYS) estimators respectively. However, the 

dramatic improvement in terms of bias and rmse for the high value of the persistence 

parameter γ  is conducted by using the GMM(FOC-o) estimator which uses the 

first-order conditions of the CMLE written as the plain sums of fractions of the moment 

conditions used mainly in the GMM(g-STD) and GMM(h-STD) estimators. 

 It cannot be said that the GMM(FOC-s) estimator, which uses the first-order 

conditions of the CMLE written using the plain sums of the stationarity moment 

conditions, behaves well for the low value of the persistent parameter γ  and the large 

value of the variance 
2

ησ  which is associated with the dispersed fixed effects. However, 

it behaves well for the high value of the persistence parameter γ , which is comparable 

to the GMM(FOC-o) estimator in terms of bias and rmse. 

 

3.2. Model with the strictly exogenous continuous explanatory variable 

 The DGP is as follows:  

 
, 11 if ( , , )

0 otherwise

i i t it it

it

p y x
y

η ζ− >
= 


, 
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1 1

1

1 if ( , )

0 otherwise

i i i

i

q x
y

η ζ>
= 


, 

, 1 , 1 , 1( , , ) exp( ) / (1 exp( ))i i t it i i t it i i t itp y x y x y xη η γ β η γ β− − −= + + + + + , 

 1 1 1 1( , ) 1/ (1 (1 exp( )) / (exp( )(1 exp( ))))
i i i i i i i i

q x x x xη η β η β η γ β= + + + + + + + , 

 , 1it i t i it
x xρ τ η ε−= + + , 

 
2 1/2

1 1( / (1 )) (1/ (1 ) )i i ix τ ρ η ρ ε= − + − , 

~ U(0,1)
it

ζ ; 2~ N(0, )i ηη σ ; 
2~ N(0, )it εε σ . 

In the DGP, values are set to the parameters γ , β , ρ , τ , 
2

ησ  and 
2

εσ . The 

experiments are carried out with cross-sectional sizes 1000N = , 5000  and 10000 , 

numbers of time periods 4T =  and 8 , and number of replications 10000
N

R = . 

 The correlations are permitted between the explanatory variables 
it

x  and the 

fixed effects 
i

η , assuming the fixed effects model. 

 The small sample properties are investigated for the root-N consistent GMM 

estimators proposed in previous section for the dynamic fixed effects logit model with 

the strictly exogenous continuous explanatory variable (i.e. (2.5.1) with (2.5.2)). In the 

Monte Carlo experiments carried out in this subsection, the GMM estimator based on 

the g-form, which is referred to as the GMM(g-HTD), uses the following 3T − , 

( 2)( 3) / 2T T− − , and 3( 3)T −  unconditional moment conditions constructed from the 

conditional moment conditions (2.5.13) with (2.5.14): 

E[ ] 0
it

U =ℏ ,  for 3 1t T≤ ≤ − ,    (3.2.1) 

E[ ] 0
is it

y U =ℏ ,  for 1 2s t≤ ≤ − ; 3 1t T≤ ≤ − ,  (3.2.2) 

E[ ] 0
is it

x U∆ =ℏ ,  for 1 1t s t− ≤ ≤ + ; 3 1t T≤ ≤ − ,  (3.2.3) 

while that based on the h-form, which is referred to as the GMM(h-HTD), uses the 

following 3T − , ( 2)( 3) / 2T T− − , and 3( 3)T −  unconditional moment conditions 

constructed from the conditional moment conditions (2.5.15) with (2.5.16):  

E[ ] 0
it

ϒ =ℏ ,  for 3 1t T≤ ≤ − ,    (3.2.4) 

E[ ] 0
is it

y ϒ =ℏ ,  for 1 2s t≤ ≤ − ; 3 1t T≤ ≤ − ,  (3.2.5) 

E[ ] 0
is it

x∆ ϒ =ℏ ,  for 1 1t s t− ≤ ≤ + ; 3 1t T≤ ≤ − ,  (3.2.6) 

 By using the moment conditions (3.2.1) - (3.2.3) and (3.2.4) - (3.2.6), the root-N 

consistent estimations of the parameters of interest (i.e. γ  and β ) can be conducted 

for the model (2.5.1) with (2.5.2).13 The moment conditions (3.2.2) and (3.2.5) are often 

                                                   
13 When 

it t
x TDβ +  is used instead of 

it
xβ  in the model (2.5.1) with (2.5.2), where 

t
TD  is time dummy, 

it
xβ∆  and 

, 1i t
xβ

+
∆  in 

it
Uℏ  and 

it
ϒℏ  are replaced by 

it t
x TDβ∆ + ∆  and 

, 1 1i t t
x TDβ

+ +
∆ + ∆ , respectively. In 
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referred to as the sequential moment conditions with respect to the dependent variable, 

which correspond to the standard moment conditions proposed for the simple dynamic 

fixed effects logit model in previous section and frequently used in the context of the 

ordinary dynamic panel data (see Holtz-Eakin et al., 1988, and Arellano and Bond, 1991, 

etc.). 

 Table 3 and 4 report the results of the Monte Carlo experiments on the root-N 

consistent estimators (i.e. the GMM(g-HTD) and GMM(h-HTD) estimators) for the 

dynamic fixed effects logit model with the strictly exogenous continuous explanatory 

variable when 4T =  and 8, respectively. 

 It can be said that the size alleviations of bias and rmse for the GMM(g-HTD) and 

GMM(h-HTD) estimators back up the presence of the root-N consistent estimators for 

the dynamic fixed effects logit model with strictly exogenous continuous explanatory 

variables. The size alleviation of rmse is pronounced for the case where 8T = . It is 

considered that this is due to the increase of sample size in substance. 

 Broadly speaking, what is true for the model without explanatory variable in 

previous subsection is true for the model with the strictly exogenous continuous 

explanatory variable. The larger downward biases for the GMM(g-HTD) and 

GMM(h-HTD) estimators of the persistence parameter γ  are recognizable when the 

data of the dependent and explanatory variables are more persistent. It is conceivable 

that the GMM(g-HTD) and GMM(h-HTD) estimators are afflicted with the weak 

instruments problem.14 

 As the data of the dependent and explanatory variables are persistent, the small 

sample performances of the GMM(g-HTD) and GMM(h-HTD) estimators for the 

coefficient β  on the explanatory variable also deteriorate. The sizes of bias and rmse 

with respect to β  are small, compared to those with respect to γ . The sizes of bias are 

especially small. These are similar to the simulation results conducted by Kitazawa 

(2012) for the static fixed effects logit model. 

 

                                                                                                                                                     
this case, it can be said that the root-N consistent estimations of the first-differenced time dummies 

t
TD∆  (for 

3 t T≤ ≤ ) are possible jointly with those of γ  and β , by using the moment conditions (3.2.1) - (3.2.3) and 

(3.2.4) - (3.2.6). The possibility of the root-N consistent estimators is also shown for the dynamic fixed effects logit 

model with time dummies in addition to the strictly exogenous continuous explanatory variables. 
14 The sizes of bias for the GMM(g-HTD) and GMM(h-HTD) estimators for the persistence parameter γ  are 

larger when 8T =  than when 4T = . It is conceivable that this is due to the excess usage of the weak 
instruments, as is the case with the interpretation in previous subsection. 
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4. Conclusion 

 In this paper, the transformations and valid moment conditions were advocated for 

the dynamic fixed effects logit models without explanatory variable and with strictly 

exogenous continuous explanatory variables. For the model without explanatory 

variable, the valid moment conditions are constructed based on the error-components 

structures after the model is transformed into the simple linear panel data models with 

additive fixed effects, while for the model with strictly exogenous continuous 

explanatory variables, those are constructed by applying a variety of the HTD 

transformation proposed by Kitazawa (2012) after the model is transformed in order 

that the logit probabilities composed of the fixed effects and the explanatory variables 

are separated out as the additive terms. The valid moment conditions for the model 

without explanatory variable include the stationarity moment conditions and two of 

whose combinations are just the first-order condition of the CMLE proposed by 

Chamberlain (1985).  

 The high point of the paper is that if the number of time periods of panel data is 

four or more, the GMM estimators, which are the root-N consistent estimators, can be 

constructed using the valid moment conditions, for the dynamic fixed effects logit model 

with strictly exogenous continuous explanatory variables as well as that without 

explanatory variable. The exploration of the dynamic fixed effects logit models from a 

traditional angle has produced fruitful outcomes. As might be expected by more than a 

few researchers, it was the traditional approach that was conducive to constructing the 

root-N consistent estimators for the dynamic fixed effects logit model with strictly 

exogenous continuous explanatory variables. 

 

Appendix A. 

 Plugging , 1 , 1
tanh(( ) / 2) 2 ( , ) 1

i i t i i t
y p yη γ η− −+ = − , tanh( / 2) 2 ( ) 1

i i
gη η= − , and 

, 1 , 1
tanh( / 2) tanh( / 2)

i t i t
y yγ γ− −=  (due to the fact that it

y  is binary) into the formula 

with respect to the hyperbolic function: 

, 1

, 1

, 1

tanh( / 2) tanh(( ) / 2)
tanh(( ) / 2)

1 tanh( / 2) tanh(( ) / 2)

i i t

i i t

i i t

y
y

y

η γ
η γ

η γ
−

−

−

+
+ =

+
,  (A.1) 

the following relationship is obtained: 
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, 1

, 1 , 1 , 1 , 1

, 1

( , )

2(1 ( , )) ( ) tanh( / 2) ( , ) tanh( / 2)

( ) tanh( / 2)(1 ) ( )(1 tanh( / 2)) .

i i t

i i t i i t i i t i t

i i t i

p y

p y g y p y y

g y g

η

η η γ η γ

η γ η γ

−

− − − −

−

= − +

+ − + −

  (A.2) 

Applying 1

1 , 1E[ | , , ] ( , )t

it i i i i i ty y v p yη η−

−= , 

1

, 1 1 , 1E[(1 ) | , , ] ( )(1 )t

i t it i i i i i ty y y v g yη η−

− −− = −     (A.3) 

(which is obtained by utilizing the property that (1 ) 0
it it

y y− = ) and 

1

1

1 1

, 1 1 1 , 1 1

E[(1 ) ( ) | , , ]

E[E[(1 ) | , , ] | , , ] E[(1 ) | , , ]

t

it i i i i

t t t

it i t i i i i i i it i t i i i

y g y v

y y y v y v y y y v

η η

η η η

−

− −
+ +

−

= − = −
 (A.4) 

to (A.2), and then dividing both sides of (A.2) by 1 tanh( / 2)γ− , equations (2.1.7) with 

(2.1.8) are obtained. 

 Next, the following relationship is obtained: 

, 1

, 1 , 1 , 1 , 1

, 1

( , )

2 ( , ) ( ) tanh( / 2)(1 ) ( , ) tanh( / 2)(1 )

( ) tanh( / 2) ( )(1 tanh( / 2)) .

i i t

i i t i i t i i t i t

i i t i

p y

p y h y p y y

h y h

η

η η γ η γ

η γ η γ

−

− − − −

−

= − − −

+ + −

 (A.5) 

by replacing tanh( / 2) 2 ( ) 1
i i

gη η= −  and , 1 , 1
tanh( / 2) tanh( / 2)

i t i t
y yγ γ− −=  in (A.1) 

with  tanh(( ) / 2) 2 ( ) 1
i i

hη γ η+ = −  and , 1 , 1
tanh(( ) / 2) tanh( / 2)(1 )

i t i t
y yγ γ γ− −− = − − , 

respectively. Applying 1
1 , 1E[ | , , ] ( , )t

it i i i i i ty y v p yη η−
−= , 

 1
, 1 1 , 1E[ | , , ] ( )t

i t it i i i i i ty y y v h yη η−
− −=     (A.6) 

(which is obtained by utilizing the property that 
2
it ity y= ) and 

1 1
1 , 1 1E[ ( ) | , , ] E[ | , , ]t t

it i i i i it i t i i iy h y v y y y vη η η− −
+=    (A.7) 

to (A.5), and then dividing both sides of (A.5) by 1 tanh( / 2)γ− , equations (2.1.9) with 

(2.1.10) are obtained. 

 

Appendix. B. 

 Replacing the unobservable variables itw  and isv  in (2.2.1) - (2.2.3) with the 

observable variables itu  and isy  respectively gives the following equations: 

 E[ ] E[ ( )]
it i

u g η= , for 2 1t T≤ ≤ − ,    (B.1) 

E[ ] E[ ( ) ]
is it i is

y u g yη= , for 1 1s t≤ ≤ − ; 2 1t T≤ ≤ − .  (B.2) 

 The valid moment conditions are constructed based on the compact relationships 

holding among (B.1) and (B.2). 
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 First, subtracting , 1
E[ ]

i t
u −  from E[ ]

it
u  gives the moment conditions (2.2.4). Next, 

subtracting , 1
E[ ]

is i t
y u −  from E[ ]

is it
y u  (for 1 2s t≤ ≤ − ) gives the moment conditions 

(2.2.5), while subtracting , 2
E[ ]

i t it
y u−  from , 1

E[ ]
i t it

y u−  gives 

  , 1 , 1
E[ ] E[ ( ) ]

i t it i i t
y u g yη− −∆ = ∆ ,     (B.3) 

where the unobservable variable ( )
i

g η  remains to be eliminated. To solve this 

problem, taking first-difference of (A.3) in Appendix A and then applying law of total 

expectation to the first-difference gives 

 , 1 , 1 , 2 , 1
E[ ( ) ] E[(1 ) (1 ) ]

i i t i t it i t i t
g y y y y yη − − − −∆ = − − − − .   (B.4) 

Then, plugging (B.4) into (B.3) gives the following 3T −  moment conditions: 

 , 1 , 1 , 2 , 1
E[ (1 ) (1 ) ] 0

i t it i t it i t i t
y u y y y y− − − −∆ + − − − = , for 3 1t T≤ ≤ − , (B.5) 

whose heft-hand sides are equivalent to the subtractions of (2.2.5) for 2s t= −  from 

(2.2.4), taking notice of the fact that (1 ) 0
it it

y y− = . These equivalences imply that the 

moment conditions (B.5) are superfluous. 

 The same logic is applied to (2.2.6) - (2.2.8) to give the moment conditions (2.2.9) 

and (2.2.10). The first-difference of (A.6) in Appendix A is used instead of (A.3) in order 

to obtain the following 3T −  moment conditions:  

 , 1 , 1 , 2 , 1
E[ ] 0

i t it i t it i t i t
y y y y yυ− − − −∆ − + = ,  for 3 1t T≤ ≤ − , (B.6) 

whose left-hand-sides are equivalent to (2.2.10) multiplied by ( 1)− , taking notice of the 

fact that (1 ) 0
it it

y y− = . These equivalences imply that the moment conditions (B.6) are 

superfluous. 

 Finally, the moment conditions (B.5) and (B.6), which correspond to the additional 

non-linear moment conditions proposed by Ahn (1990) and Ahn and Schmidt (1995) in 

the framework of the ordinary dynamic panel data model, can be written by using the 

moment conditions (2.2.4) and (2.2.5) based on the g-form and the moment conditions 

(2.2.10) based on the h-form, respectively. 

 

Appendix. C. 

 Since , 1
E[ ( ) ] 0

i i t
g yη −∆ =  according to (2.3.3), (B.3) in Appendix B reduces to the 

moment conditions (2.3.4). By the same token, the moment conditions (2.3.5) are 

obtained by paying attention to , 1
E[ ( ) ] 0

i i t
h yη −∆ = . 

 The moment conditions (2.3.4) and (2.3.5) are regarded as the replacements of the 

moment conditions (B.5) and (B.6) for the case of the stationary dependent variable, 
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respectively. They cannot be regarded as being superfluous. 

 

Appendix D. 

 The following relationships hold: 

2 2 2 2 2

, 1 , 2E[ / ] (1 / 4) sech ( / 2) E[( ) ( ) ]it it i t i ty y yγ γ + −∂ ∂ = − ∆ −ℓ ,  (D.1) 

2 2 2 2

, 1 , 2
E[( / ) ] (1/ 4)(1 tanh ( / 2)) E[( ) ( ) ]

(1/ 2) tanh( / 2) E[ / ],

it it i t i t

it

y y yγ γ

γ γ

+ −∂ ∂ = − ∆ −

− ∂ ∂

ℓ

ℓ

 (D.2) 

where 
2 2

, 1 , 2 , 1 , 2E[ / ] (1/ 2) E[( )( ) tanh( / 2)( ) ( ) ]it it i t i t it i t i ty y y y y yγ γ+ − + −∂ ∂ = ∆ − − ∆ −ℓ . 

 Taking notice of the facts that 
2 2

sech ( / 2) 1 tanh ( / 2)γ γ= −  and E[ / ] 0
it

γ∂ ∂ =ℓ , 

(D.1) multiplied by ( 1)−  is equivalent to (D.2). This equivalence is conceptually the 

same as that firstly pointed out by Lee (2002, pp. 84-87) and compactly rewritten by 

Kitazawa (2012) in the framework of the GMM, on the CMLE for the static fixed effects 

logit model. 

 

Appendix E. 

 A tedious calculation proves that the first-order condition with respect to γ  for 

(2.4.1) with (2.4.2), which is multiplied by exp( ) 1γ + , is the empirical counterpart of 

the following moment condition: 

 , 2 , 1 , 2 , 1 , 1
E[ ( , , ) ( , , , )] 0

i t it i t i t i t it i t
A y y y B y y y yδ− + − − +∆ + = ,   (E.1) 

where 
, 2 , 1 , 1 , 2( , , )i t it i t it i t i t itA y y y y y y y− + + −∆ = ∆ − ∆  and 

, 2 , 1 , 1 , 2 , 1 , 1 , 2 , 1 , 1

, 2 , 1 , 2 , 1 , 1 , 2 , 1 , 1 , 1

( , , , ) 2

.

it it iti t i t i t i t i t i t i t i t i t

it it iti t i t i t i t i t i t i t i t i t

B y y y y y y y y y y y y

y y y y y y y y y y y y

− − + − − + − − +

− − − − + − + − +

= − − −

+ + + +
 

 In addition, another tedious calculation (where the facts with respect to the binary 

variable (i.e. 2

it ity y=  and (1 ) 0
it it

y y− = ) are of assistance) proves that the moment 

condition (2.4.3) reduces to 

 , 2 , 2 , 1 , 1
E[ ( , ) ( , , , )] 0

i t it i t i t it i t
C y y B y y y yδ− − − +∆ + = ,   (E.2) 

where , 2 , 2( , ) 2i t it it i t itC y y y y y− −∆ = ∆ − ∆ . 

 Further, subtracting (2.1.9) from (2.1.7) gives 

  , 10 ( )it i t i ity y fδ η ϖ+= − ∆ ∆ − + ,     (E.3) 

where it it itwϖ ω= − . Applying law of total expectation to the first difference of (E.3) 

gives 
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 , 1 , 2E[ ] E[(1 ) ]it i t i t ity y y y+ −∆ = − ∆ ,     (E.4) 

where the fact that , 1( )it it i t ity y y y−∆ + = ∆  is of assistance and further it should be 

noted that ( )it i ity g vη= +  if 0δ = . Accordingly, 

 , 2 , 1 , 2
E[ ( , , )] E[ ( , )]

i t it i t i t it
A y y y C y y− + −∆ = ∆ ,    (E.5) 

which indicates the equivalence between (E.1) and (E.2), implying that the first-order 

condition of the CMLE proposed by Chamberlain (1985) can be written as the moment 

condition (2.4.3). 

 Further, it is proved that the moment condition (2.4.3) reduces to the moment 

condition (2.4.4) if the dependent variable is stationary, by taking notice of the fact that 

the moment condition (2.4.3) is the plain sum of the moment conditions (B.5) and (B.6) 

in Appendix B and further by paying attention to the fact that the moment conditions 

(B.5) and (B.6) are respectively replaced by the moment conditions (2.3.4) and (2.3.5) for 

the case of the stationary dependent variable. 

 

Appendix F. 

 The following four lemmas are needed in order to derive (i.e. prove) equation (2.5.7) 

with (2.5.8) and (2.5.9): 

 

Lemma F.A: Equation (2.5.3) with (2.5.4) - (2.5.6) can be written as 

 

, 1 , 1 , 1

, 1 , 1

, 1

( , , ) 2(1 ( , , )) ( , ) tanh( / 2)

( , , ) tanh( / 2)

( , ) tanh( / 2)(1 ) ( , )(1 tanh( / 2)) .

i i t it i i t it i it i t

i i t it i t

i it i t i it

p y x p y x g x y

p y x y

g x y g x

η η η γ

η γ

η γ η γ

− − −

− −

−

= −

+

+ − + −

  (F.A.1) 

Proof: Plugging , 1 , 1
tanh(( ) / 2) 2 ( , , ) 1

i i t it i i t it
y x p y xη γ β η− −+ + = − , 

tanh(( ) / 2) 2 ( , ) 1
i it i it

x g xη β η+ = − , and , 1 , 1
tanh( / 2) tanh( / 2)

i t i t
y yγ γ− −=  into the 

formula with respect to the hyperbolic function: 

, 1

, 1

, 1

tanh(( ) / 2) tanh(( ) / 2)
tanh(( ) / 2)

1 tanh(( ) / 2) tanh(( ) / 2)

i it i t

i i t it

i it i t

x y
y x

x y

η β γ
η γ β

η β γ
−

−

−

+ +
+ + =

+ +
, (F.A.2) 

equation (F.A.1) is obtained.      Q.E.D. 

 

Lemma F.B: The following relationship holds with respect to , 1
( , )

i i t
g xη + : 

 , 1 , 1 , 1 , 1
( , ) / ( , ) (1 exp( )) ( , ) exp( )

i i t i it i t i i t i t
g x g x x g x xη η β η β+ + + += − ∆ + ∆ . (F.B.1) 

Proof: The derivation is simple, taking notice of the fact that 



Design: 2013/04/30, Revision: 2013/08/26, Kyushu Sangyo University 

23 
 

, 1 , 1
exp( )exp( ) exp( )

i t i it i i t
x x xβ η β η β+ +∆ + = + .    Q.E.D. 

 

Lemma F.C: The following relationship holds with respect to , 1
( , )

i i t
g xη + : 

 

, 1 , 1 , 1

1

, 1 , 1 1

1

, 1 , 1 , 1 1

exp( )(1 ( , ))(1 )

exp( ) E[(1 )(1 ) | , , , ]

(1 exp( ))E[(1 )(1 ) | , , , ] .

i t i i t i t

t T

i t i t it i i i i

t T

i t i t it i t i i i i

x g x y

x y y y v x

x y y y y v x

β η

β η

β η

+ + −

−

+ −

−

+ − +

∆ − −

= ∆ − −

+ − ∆ − −

 (F.C.1) 

Proof: The relationship similar to (A.3) used in Proof of Appendix A holds with respect to 

( , )
i it

g xη : 

 
1

1 , 1 , 1E[ | , , , ](1 ) ( , )(1 )t T

it i i i i i t i it i t
y y v x y g x yη η−

− −− = − .   (F.C.2) 

Subtracting (F.C.2) from , 1
(1 )

i t
y −−  gives 

 
1

1 , 1 , 1E[(1 ) | , , , ](1 ) (1 ( , ))(1 )t T

it i i i i i t i it i t
y y v x y g x yη η−

− −− − = − − .  (F.C.3) 

Taking notice of the relationship that 

, 1 , 1 , 1
( , ) / ( , ) exp( )((1 ( , )) / (1 ( , )))

i i t i it i t i i t i it
g x g x x g x g xη η β η η+ + += ∆ − − , 

multiplying both sides of (F.C.3) by , 1
( , ) / ( , )

i i t i it
g x g xη η+  gives 

 

1

, 1 1 , 1

, 1 , 1 , 1

( ( , ) / ( , ))E[(1 ) | , , , ](1 )

exp( )(1 ( , ))(1 ) .

t T

i i t i it it i i i i i t

i t i i t i t

g x g x y y v x y

x g x y

η η η

β η

−
+ −

+ + −

− −

= ∆ − −
  (F.C.4) 

Further, by utilizing (F.C.2) one period later, it follows that 

1 1

, 1 1 , 1 1

1

, 1 1 1

1

, 1 1

( , ) E[(1 ) | , , , ] E[ ( , )(1 ) | , , , ]

E[E[(1 ) | , , , ] | , , , ]

E[(1 ) | , , , ] .

t T t T

i i t it i i i i i i t it i i i i

t T t T

it i t i i i i i i i i

t T

it i t i i i i

g x y y v x g x y y v x

y y y v x y v x

y y y v x

η η η η

η η

η

− −
+ +

−

+

−

+

− = −

= −

= −

 (F.C.5) 

Plugging (F.B.1) into (F.C.4) and then plugging (F.C.5) into (F.C.4), (F.C.1) is obtained. 

Q.E.D. 

 

Lemma F.D: The following relationship holds with respect to , 1
( , )

i i t
g xη + : 

 
1

, 1 , 1 , 1 1(1 ( , , )) ( , ) E[(1 ) | , , , ]t T

i i t it i i t it i t i i i i
p y x g x y y y v xη η η −

− + +− = − . (F.D.1) 

Proof: Utilizing both relationships (F.C.5) used in Proof of Lemma F.C and  

1

, 1 , 1 1 , 1(1 ( , , )) ( , ) E[(1 ) | , , , ] ( , )t T

i i t it i i t it i i i i i i t
p y x g x y y v x g xη η η η−

− + +− = − , (F.D.2) 

(F.D.1) is obtained.       Q.E.D. 

 

Using the lemmas above, the derivation (i.e. proof) of the g-forms (2.5.7) with (2.5.8) and 
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(2.5.9) is conducted: First, equation (F.A.1) is transformed into 

 

, 1

, 1 , 1

, 1 , 1

, 1

(1 ( , , ))

2(1 ( , , )) ( , ) tanh( / 2)

(1 ( , , )) tanh( / 2)

(1 ( , )) ( tanh( / 2)(1 ) (1 tanh( / 2)) ).

i i t it

i i t it i it i t

i i t it i t

i it i t

p y x

p y x g x y

p y x y

g x y

η

η η γ

η γ

η γ γ

−

− −

− −

−

−

= − −

+ −

+ − − + −

  (F.1) 

Next, multiplying (F.1) by , 1
( , ) / ( , )

i i t i it
g x g xη η+  and then utilizing the relationship 

that , 1 , 1 , 1
( , ) / ( , ) exp( )((1 ( , )) / (1 ( , )))

i i t i it i t i i t i it
g x g x x g x g xη η β η η+ + += ∆ − −  gives 

, 1 , 1

, 1 , 1 , 1

, 1 , 1 , 1

, 1 , 1 ,

( ( , ) / ( , )) (1 ( , , ))

2(1 ( , , )) ( , ) tanh( / 2)

( ( , ) / ( , ))(1 ( , , )) tanh( / 2)

exp( )(1 ( , ))( tanh( / 2)(1

i i t i it i i t it

i i t it i i t i t

i i t i it i i t it i t

i t i i t i

g x g x p y x

p y x g x y

g x g x p y x y

x g x y

η η η

η η γ

η η η γ

β η γ

+ −

− + −

+ − −

+ +

−

= − −

+ −

+ ∆ − − 1) (1 tanh( / 2)) ) .t γ− + −

 (F.2) 

The g-forms (2.5.7) with (2.5.8) and (2.5.9) are obtained by dividing (F.2) by 

, 1
exp( )(1 tanh( / 2))

i t
xβ γ+∆ − , after plugging (F.B.1) into (F.2) and then plugging (F.C.1) 

and (F.D.1) into (F.2). 

 

Appendix G. 

 The following four lemmas are needed in order to derive (i.e. prove) equation 

(2.5.10) with (2.5.11) and (2.5.12): 

 

Lemma G.A: Equation (2.5.3) with (2.5.4) - (2.5.6) can be written as 

, 1 , 1 , 1

, 1 , 1

, 1

( , , ) 2 ( , , ) ( , ) tanh( / 2)(1 )

( , , ) tanh( / 2)(1 )

( , ) tanh( / 2) ( , )(1 tanh( / 2)) .

i i t it i i t it i it i t

i i t it i t

i it i t i it

p y x p y x h x y

p y x y

h x y h x

η η η γ

η γ

η γ η γ

− − −

− −

−

= −

− −

+ + −

 

 

(G.A.1) 

Proof: Plugging , 1 , 1
tanh(( ) / 2) 2 ( , , ) 1

i i t it i i t it
y x p y xη γ β η− −+ + = − , 

tanh(( ) / 2) 2 ( , ) 1
i it i it

x h xη γ β η+ + = − , 

and , 1 , 1
tanh(( ) / 2) tanh( / 2)(1 )

i t i t
y yγ γ γ− −− = − −  into the formula with respect to the 

hyperbolic function: 

, 1

, 1

, 1

tanh(( ) / 2) tanh(( ) / 2)
tanh(( ) / 2)

1 tanh(( ) / 2) tanh(( ) / 2)

i it i t

i i t it

i it i t

x y
y x

x y

η γ β γ γ
η γ β

η γ β γ γ
−

−

−

+ + + −
+ + =

+ + + −
, (G.A.2) 

equation (G.A.1) is obtained.      Q.E.D. 
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Lemma G.B: The following relationship holds with respect to , 1
( , )

i i t
h xη + : 

 , 1 , 1 , 1 , 1
( , ) / ( , ) (1 exp( )) ( , ) exp( )

i i t i it i t i i t i t
h x h x x h x xη η β η β+ + + += − ∆ + ∆ . (G.B.1) 

Proof: The derivation is simple, taking notice of the fact that 

, 1 , 1
exp( )exp( ) exp( )

i t i it i i t
x x xβ η γ β η γ β+ +∆ + + = + + .   Q.E.D. 

 

Lemma G.C: The following relationship holds with respect to , 1
( , )

i i t
h xη + : 

 

1

, 1 , 1 , 1 , 1 1

1

, 1 , 1 , 1 1

( , ) exp( ) E[ | , , , ]

(1 exp( )) E[ | , , , ] .

t T

i i t i t i t i t it i i i i

t T

i t i t it i t i i i i

h x y x y y y v x

x y y y y v x

η β η

β η

−
+ − + −

−
+ − +

= ∆

+ − ∆
 (G.C.1) 

Proof: The relationship similar to (A.6) used in Proof of Appendix A holds with respect to 

( , )
i it

h xη : 

 
1

1 , 1 , 1E[ | , , , ] ( , )t T

it i i i i i t i it i t
y y v x y h x yη η−

− −= .    (G.C.2) 

Multiplying both sides of (G.C.2) by , 1
( , ) / ( , )

i i t i it
h x h xη η+  gives 

 
1

, 1 1 , 1 , 1 , 1( ( , ) / ( , )) E[ | , , , ] ( , )t T

i i t i it it i i i i i t i i t i t
h x h x y y v x y h x yη η η η−

+ − + −= . (G.C.3) 

Further, by utilizing (G.C.2) one period later, it follows that 

 

1 1

, 1 1 , 1 1

1

, 1 1 1

1

, 1 1

( , ) E[ | , , , ] E[ ( , ) | , , , ]

E[E[ | , , , ] | , , , ]

E[ | , , , ] .

t T t T

i i t it i i i i i i t it i i i i

t T t T

it i t i i i i i i i i

t T

it i t i i i i

h x y y v x h x y y v x

y y y v x y v x

y y y v x

η η η η

η η

η

− −
+ +

−

+

−

+

=

=

=

 (G.C.4) 

Plugging (G.B.1) into (G.C.3) and then plugging (G.C.4) into (G.C.3), (G.C.1) is obtained. 

         Q.E.D. 

 

Lemma G.D: The following relationship holds with respect to , 1
( , )

i i t
h xη + : 

 
1

, 1 , 1 , 1 1( , , ) ( , ) E[ | , , , ]t T

i i t it i i t it i t i i i i
p y x h x y y y v xη η η −

− + += .  (G.D.1) 

Proof: Utilizing both relationships (G.C.4) used in Proof of Lemma G.C and  

 
1

, 1 , 1 1 , 1( , , ) ( , ) E[ | , , , ] ( , )t T

i i t it i i t it i i i i i i t
p y x h x y y v x h xη η η η−

− + += ,  (G.D.2) 

(G.D.1) is obtained.       Q.E.D. 

 

Using the lemmas above, the derivation (i.e. proof) of the h-forms (2.5.10) with (2.5.11) 

and (2.5.12) is conducted: First, multiplying (G.A.1) by , 1
( , ) / ( , )

i i t i it
h x h xη η+  gives 
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, 1 , 1

, 1 , 1 , 1

, 1 , 1 , 1

, 1 , 1 , 1

( ( , ) / ( , )) ( , , )

2 ( , , ) ( , ) tanh( / 2)(1 )

( ( , ) / ( , )) ( , , ) tanh( / 2)(1 )

( , ) tanh( / 2) ( , )(1 tanh( /

i i t i it i i t it

i i t it i i t i t

i i t i it i i t it i t

i i t i t i i t

h x h x p y x

p y x h x y

h x h x p y x y

h x y h x

η η η

η η γ

η η η γ

η γ η γ

+ −

− + −

+ − −

+ − +

= −

− −

+ + − 2)) .

  (G.1) 

The h-forms (2.5.10) with (2.5.11) and (2.5.12) are obtained by dividing (G.1) by 

1 tanh( / 2)γ− , after plugging (G.B.1) into (G.1) and then plugging (G.C.1) and (G.D.1) 

into (G.1). 

 

Appendix H. 

 The following formula holds for the hyperbolic tangent function: 

, 1 , 2 , 1

, 2 , 1

, 1 , 2 , 1 , 1 , 2 , 1

( , ) ( , , )

tanh((1/ 2)( ( )))

( ( , ) ( , , ) 2 ( , ) ( , , )).

i i t i i t i t

i t i t it

i i t i i t i t i i t i i t i t

g x p y x

y x x

g x p y x g x p y x

η η

γ β

η η η η

+ − −

− +

+ − − + − −

−

= − + ∆ + ∆

× + −

 (H.1) 

Further, the following relationships are obtained from (2.5.1) with (2.5.2) and (2.5.7) 

with (2.5.8) and (2.5.9):  

 
1

, 1 1( , ) E[ | , , , ]t T

i i t it i i i i
g x U y v xη η −

+ = ,     (H.2) 

 
2

, 2 , 1 , 1 1( , , ) E[ | , , , ]t T

i i t i t i t i i i i
p y x y y v xη η −

− − −= ,    (H.3) 

1

, 1 , 2 , 1 , 1 1 , 1 , 1( , ) ( , , ) E[ | , , , ] ( , ) ,t T

i i t i i t i t it i t i i i i i t i i t
g x p y x U y y v x v g xη η η η−

+ − − − − += −  (H.4) 

Plugging (H.2) - (H.4) into (H.1) and then taking the expectation conditional on the 

information 2
1( , , , )

t T
i i i iy v xη −  for both sides of (H.1) gives the moment conditions 

(2.5.13) with (2.5.14). 

 Next, by replacing , 1
( , )

i i t
g xη + , , 2i t

yγ −− , and it
U  in (H.1) - (H.4) with , 1

( , )
i i t

h xη + , 

, 2
(1 )

i t
yγ −− , and it

ϒ  respectively, the moment conditions (2.5.15) with (2.5.16) are 

obtained. 
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Table 1. Monte Carlo results for the simple dynamic fixed effects logit model, T = 4 

 

Notes: 1) The parameter settings in the DGP are as follows: Simulation (1a): 0.5γ = ; 
2

0.5ησ = . Simulation 

(1b): 0.5γ = ; 
2

1.5ησ = . Simulation (1c): 2.5γ = ; 
2

0.5ησ = . Simulation (1d): 2.5γ = ; 
2

1.5ησ = . 2) 

Inappropriate replications (i.e. the replications where the linear estimates of δ  are less than or equal to minus 

one, etc.) are eliminated in calculating the statistics. Their number is zero or extremely small for each GMM 

estimator in each parameter setting. 3) In each of the GMM estimations, the initial consistent estimate is obtained 

by using the inverse of cross-sectional average of the products between the instruments matrix as the non-optimal 

weighting matrix, where it should be noted that the components of the moment conditions used are decomposed 

into the products of the transformations and the instruments. 

 

  

N  = 1000 N  = 5000 N  = 10000

bias rmse bias rmse bias rmse

Simulation (1a)

GMM(g-STD) γ
-0.034 0.232 -0.008 0.102 -0.005 0.072

GMM(g-SYS) γ -0.033 0.213 -0.007 0.092 -0.005 0.065

GMM(h-STD) γ
-0.032 0.231 -0.008 0.102 -0.005 0.072

GMM(h-SYS) γ -0.027 0.214 -0.006 0.095 -0.004 0.066

GMM(FOC-o) γ
-0.004 0.207 -0.002 0.091 -0.001 0.064

GMM(FOC-s) γ -0.029 0.306 -0.004 0.128 -0.004 0.089

Simulation (1b)

GMM(g-STD) γ
-0.048 0.278 -0.013 0.119 -0.005 0.084

GMM(g-SYS) γ -0.045 0.252 -0.011 0.107 -0.005 0.075

GMM(h-STD) γ
-0.049 0.282 -0.013 0.120 -0.005 0.084

GMM(h-SYS) γ -0.041 0.254 -0.009 0.110 -0.004 0.078

GMM(FOC-o) γ
-0.008 0.246 -0.004 0.106 -0.001 0.075

GMM(FOC-s) γ -0.045 0.515 -0.005 0.145 -0.004 0.104

Simulation (1c)

GMM(g-STD) γ
-0.394 0.841 -0.058 0.315 -0.021 0.206

GMM(g-SYS) γ -0.378 0.910 -0.043 0.289 -0.015 0.199

GMM(h-STD) γ
-0.329 0.771 -0.045 0.295 -0.020 0.196

GMM(h-SYS) γ -0.274 0.695 -0.030 0.278 -0.013 0.188

GMM(FOC-o) γ
0.086 0.532 0.017 0.213 0.011 0.149

GMM(FOC-s) γ 0.053 0.602 0.012 0.238 0.009 0.166

Simulation (1ｄ)

GMM(g-STD) γ
-0.414 0.865 -0.067 0.342 -0.025 0.211

GMM(g-SYS) γ -0.390 0.850 -0.042 0.295 -0.019 0.201

GMM(h-STD) γ
-0.421 0.880 -0.068 0.327 -0.031 0.212

GMM(h-SYS) γ -0.327 0.751 -0.043 0.295 -0.020 0.197

GMM(FOC-o) γ
0.083 0.535 0.018 0.219 0.009 0.150

GMM(FOC-s) γ 0.053 0.596 0.013 0.241 0.006 0.167
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Table 2. Monte Carlo results for the simple dynamic fixed effects logit model, T = 8 

 

Notes: See Notes in Table 1. 

 

  

N  = 1000 N  = 5000 N  = 10000

bias rmse bias rmse bias rmse

Simulation (1a)

GMM(g-STD) γ
-0.066 0.107 -0.012 0.038 -0.006 0.026

GMM(g-SYS) γ -0.049 0.090 -0.009 0.034 -0.004 0.023

GMM(h-STD) γ
-0.058 0.101 -0.011 0.038 -0.005 0.026

GMM(h-SYS) γ -0.050 0.089 -0.009 0.034 -0.005 0.023

GMM(FOC-o) γ
-0.006 0.095 0.000 0.042 -0.001 0.030

GMM(FOC-s) γ -0.004 0.103 0.000 0.046 -0.001 0.033

Simulation (1b)

GMM(g-STD) γ
-0.090 0.134 -0.017 0.045 -0.008 0.031

GMM(g-SYS) γ -0.064 0.107 -0.012 0.038 -0.005 0.026

GMM(h-STD) γ
-0.084 0.130 -0.016 0.045 -0.007 0.031

GMM(h-SYS) γ -0.068 0.109 -0.013 0.038 -0.006 0.026

GMM(FOC-o) γ
-0.007 0.107 -0.001 0.048 0.000 0.034

GMM(FOC-s) γ -0.005 0.116 -0.001 0.052 0.000 0.037

Simulation (1c)

GMM(g-STD) γ
-1.118 1.243 -0.102 0.139 -0.037 0.072

GMM(g-SYS) γ -0.938 1.027 -0.090 0.128 -0.035 0.070

GMM(h-STD) γ
-0.695 0.780 -0.085 0.125 -0.038 0.074

GMM(h-SYS) γ -0.566 0.639 -0.062 0.107 -0.030 0.069

GMM(FOC-o) γ
-0.020 0.253 0.000 0.109 -0.002 0.078

GMM(FOC-s) γ -0.017 0.258 0.000 0.113 -0.002 0.081

Simulation (1ｄ)

GMM(g-STD) γ
-1.176 1.310 -0.118 0.156 -0.042 0.077

GMM(g-SYS) γ -0.920 1.002 -0.096 0.135 -0.038 0.074

GMM(h-STD) γ
-0.918 1.023 -0.108 0.146 -0.044 0.080

GMM(h-SYS) γ -0.662 0.745 -0.071 0.114 -0.032 0.071

GMM(FOC-o) γ
-0.024 0.256 -0.002 0.111 -0.001 0.079

GMM(FOC-s) γ -0.022 0.260 -0.002 0.115 -0.001 0.082
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Table 3. Monte Carlo results for the dynamic fixed effects logit model with the strictly 

exogenous continuous explanatory variable, T = 4 

 

Notes: 1) The parameter settings in the DGP are as follows: Simulation (2a): 0.5γ = ; 0.5β = ; 0.5ρ = ; 

0.1τ = ; 
2

0.5ησ = ; 
2

0.5εσ = . Simulation (2b): 0.8γ = ; 0.8β = ; 0.7ρ = ; 0.1τ = ; 
2

0.5ησ = ; 
2

0.5εσ = . 

Simulation (2c): 1.1γ = ; 1.1β = ; 0.9ρ = ; 0.1τ = ; 
2

0.5ησ = ;
2

0.5εσ = . 2) Inappropriate replications (i.e. 

the non-convergence replications) are eliminated in calculating the statistics. Their number is zero or extremely 

small for each GMM estimator in each parameter setting. 3) In each of the GMM estimations, the initial consistent 

estimate is obtained by using the inverse of cross-sectional average of the products between the instruments matrix 

as the non-optimal weighting matrix, where it should be noted that the components of the moment conditions used 

are decomposed into the products of the transformations and the instruments. 4) The values of the Monte Carlo 

statistics are obtained using the true values of the parameters of interest as the starting values in the optimization 

for each replication. The values of the statistics obtained using the true values are almost the same as those 

obtained using two different types of the starting values. 

 

  

N  = 1000 N  = 5000 N  = 10000

bias rmse bias rmse bias rmse

Simulation (2a)

GMM(g-HTD) γ
-0.047 0.261 -0.007 0.113 -0.004 0.079

β 0.006 0.143 0.002 0.062 0.000 0.044

GMM(h-HTD) γ
-0.042 0.260 -0.005 0.114 -0.003 0.079

β 0.003 0.142 0.002 0.063 0.000 0.044

Simulation (2b)

GMM(g-HTD) γ
-0.068 0.339 -0.012 0.142 -0.004 0.100

β 0.015 0.198 0.003 0.086 0.001 0.060

GMM(h-HTD) γ
-0.059 0.340 -0.009 0.146 -0.003 0.102

β 0.006 0.192 0.002 0.086 0.001 0.061

Simulation (2c)

GMM(g-HTD) γ
-0.146 0.556 -0.030 0.224 -0.010 0.156

β 0.035 0.316 0.009 0.138 0.003 0.096

GMM(h-HTD) γ
-0.131 0.549 -0.023 0.233 -0.010 0.160

β 0.022 0.307 0.007 0.138 0.003 0.097
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Table 4. Monte Carlo results for the dynamic fixed effects logit model with the strictly 

exogenous continuous explanatory variable, T = 8 

 

Notes: See Notes in Table 3. 

 

N  = 1000 N  = 5000 N  = 10000

bias rmse bias rmse bias rmse

Simulation (2a)

GMM(g-HTD) γ
-0.047 0.110 -0.010 0.044 -0.004 0.030

β 0.000 0.060 0.000 0.026 0.000 0.019

GMM(h-HTD) γ
-0.038 0.105 -0.008 0.044 -0.003 0.031

β -0.005 0.060 -0.001 0.027 -0.001 0.019

Simulation (2b)

GMM(g-HTD) γ
-0.079 0.152 -0.016 0.059 -0.007 0.040

β 0.007 0.082 0.002 0.036 0.001 0.026

GMM(h-HTD) γ
-0.067 0.146 -0.013 0.059 -0.006 0.041

β -0.007 0.082 -0.001 0.037 0.000 0.026

Simulation (2c)

GMM(g-HTD) γ
-0.198 0.294 -0.035 0.099 -0.016 0.067

β 0.025 0.128 0.010 0.059 0.005 0.041

GMM(h-HTD) γ
-0.179 0.279 -0.034 0.102 -0.017 0.069

β 0.006 0.125 0.006 0.059 0.004 0.042




