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Abstract

Principal component estimates of the factors are inconsistent when there are
large temporal instabilities in factor loadings in approximate factor models (Bates
et al., 2013). In this paper we test whether there has been persistent time-variation
in factor loadings since a potential changepoint, which can be near the end of the
sample. Both I(0) and I(1) factors are taken into account. We show the asymp-
totics in which the sizes of subsamples before and after the changepoint are both
infinite. Monte Carlo studies have good results in finite samples. We apply the
tests to a panel of UK macroeconomic and financial variables to check whether
there was persistent instability during and after the recent financial crisis.

1 Introduction
Factor models have been important in the analysis of high dimensional dataset in
macroeconomics and finance (Bai and Ng, 2008b; Stock and Watson, 2011), by extract-
ing information from hundreds of economic variables and leading to the improvement
of forecast or nowcast accuracy (see e.g. Stock and Watson (1999) and Giannone et al.
(2008)). In practice such models are systemically used and perform well in the institu-
tions like the Fed and the European Central Bank, but fail to precisely nowcast the GDP
growth of United Kingdom during and after the recent financial crisis. Temporal insta-
bility in factor loadings is a potential reason for poor forecasting performance (Stock
and Watson, 2009). The inference on factors are still valid provided that the instability
is not so strong, as shown by Bates et al. (2013) who studied the type of instabilities in
factor loadings including single large breaks and time-varying loadings among others,
and its magnitude under which the principal component (PC) estimator of the factors
is consistent and the number of factors can be consistently estimated using the infor-
mation criterion (IC) in Bai and Ng (2002). If time variation is stronger, however, the
inference will be misleading and the forecast will be affected. Testing time-variation in
∗This version is preliminary. Email: wen.xu@economics.ox.ac.uk. We thank Bent Nielsen and Kevin
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factor loadings is therefore necessary before every serious application of factor mod-
els. If there is strong temporal instability, a factor model with time-varying loadings
(Del Negro and Otrok, 2008) might be a better candidate used for forecasting.

The literature on testing loading instability focuses on breaks, including Breitung
and Eickmeier (2011), Chen et al. (2014), Han and Inoue (forthcoming), Yamamoto
and Tanaka (2013), Corradi and Swanson (2014) and Cheng et al. (2014). A factor
model with breaks in loadings can be equivalently represented by another factor model
with constant loadings but a larger number of factors. Consequently, if the number
of factors is not imposed ex-ante in the factor-augmented regression but estimated by
the IC of Bai and Ng (2002), breaks in loadings have no influence on the parameter
estimates in the regression. Factor models with time-varying loadings have no equiv-
alent representation of stable models and the number of factors can not in general be
estimated consistently using the existing methods in the literature (Takongmo and Ste-
vanovic, 2014). Time-varying loadings, in this sense, are more serious an issue that
potentially affects the factor-augmented regression and need to be tested. In addition,
a model with multiple breaks is a special case of a model with time-varying parame-
ters. Testing parameter stability against the alternative of martingales is addressed in a
general maximum likelihood framework in Nyblom (1989) and extended to the models
with integrated regressors in Hansen (1992) and panel data models in Yamazaki and
Kurozumi (2014). This approximate Lagrange multiplier (LM) test does not require
the knowledge of the breakpoint and is locally most powerful.

In this paper, we test large time-variation in factor loadings in approximate factor
models in presence of both cross sectional dependence and heteroskedasticity. The
magnitude of instability we intend to test is large enough to invalidate the effectiveness
of PC estimates. Different from the literature of time-varying coefficients, the time-
variation in the alternative hypothesis starts at a potential changepoint, which can be
close to the end of the sample. Therefore, we can use the stable subsample to consis-
tently estimate the number of factors as well as the error covariance matrix, in order to
avoid the issue of non-monotonic power. Our test takes into account of both I(0) and
I(1) factors with different distribution results. The major concern is the accumulation
of factor estimate errors over time which might weakens the success of the tests in con-
ventional models. Our results show that despite the strong restriction between N and T
required for test statistics to follow the limit null distribution, it becomes much looser
in finite sample simulation studies. We apply our test to a UK dataset to check whether
there was considerable time-variation during and after the recent financial crisis. Sec-
tion 2 provides the details on the models and assumptions. The asymptotics in which
the subsample before and after the changepoint are both infinitely long are discussed in
Section 2 with I(0) factor and Section 3 with I(1) factors. Section 4 presents the Monte
Carlo results. We apply our test to the UK dataset in Section 5. Section 6 concludes
the paper.
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2 Models and asymptotics for stationary factors
We study the approximate factor model with time-varying factor loadings with the
following data generation process1

Xit = λ
′
itFt +uit

where

λit =

{
λi0 t ≤ Ta

λi,t−1 + eit t > Ta

The changepoint Ta can be somewhere in the middle of the sample or near the end. In
the former case, we will use asymptotics in which Ta and T̃ = T −Ta are both infinite.
In the latter case, we will assume that T̃ is fixed. The model has the following matrix
form

vec(X ′) = vec(Λ0F ′)+DF(L⊗ IkN)e︸ ︷︷ ︸
v

+u

where X = (X1, . . . ,XT )
′; F = (F1, . . . ,FT )

′; Λ0 = (λ10, . . . ,λN0)
′; DF = diag(IN ⊗

F ′1, . . . , IN⊗F ′T ); e=(e′1, . . . ,e
′
T )
′ where et =(e′1t , . . . ,e

′
Nt)
′; u=(u′1, . . . ,u

′
T )
′; L is a T×

T lower triangular matrix with all non-zero elements equal to 1; vt = (IN⊗F ′t )∑
t
s=1 es.

Throughout the paper, ‖A ‖=
√

tr(A′A) is the Frobenius norm; λmin(A) and λmax(A)
are the minimum and maximum eigenvalues of A. We make the following assumptions
on factors, loadings and idiosyncratics for asymptotics of the case where T̃ → ∞ and
Ft is I(0).

Assumptions

1. (Factors) Ft is stationary with E(FtF ′t ) = ΣF and E ‖ Ft ‖4< ∞.

2. (Initial loadings)

(a) ‖ λi0 ‖≤ λ < ∞.

(b) ||Λ′0Λ0/N−ΣΛ|| → 0 as N→ ∞ for some positive definite ΣΛ.

3. (Loading dynamics)

(a) E(eit) = 0 and E(eite′it) = hNT Σe which is known and positive definite.

(b) eit is i.i.d. across both i and t .

(c) e is independent of both F and u .

4. (Idiosyncratics)

(a) ut is i.i.d. with E(ut) = 0, E(utu′t) =V and E(u8
it)< ∞.

1It is allowed to have small time-variation in loadings when t ≤ Ta such that the factors and their number
can be consistently estimated by PC and Bai and Ng (2002)’s IC, respectively.
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(b) max
i

∑
N
k=1 |Vki| ≤M for all N .

(c) E|N−1/2
∑

N
i=1[uisuit −E(uisuit)]|4 ≤M for every s and t.

(d) For every t, E|| 1√
NT ∑

T
s=1 ∑

N
i=1 Fs[uisuit −E(uisuit)]||2 ≤M.

(e) E|| 1√
NT ∑

T
s=1 ∑

N
i=1 Fsuisλ

′
i ||2 ≤M.

(f) For every t, E|| 1√
N ∑

N
i=1 λiuit ||4 ≤M .

(g) u and F are independent.

(h) Let V−1
i. denote the ith row of V−1 and V−1

i j is the i jth element of V−1.

i. The number of non-zero elements in V−1
i. is ri,N which is finite when

N→ ∞.
ii. The number of non-zero elements in V̂−1

i. is r̂i,N which is finite almost
surely when N→ ∞.

iii. V̂−1
i j

p→V−1
i j for each i, j,N.

Comments on assumptions:
4(b)-(f) are borrowed from Bai (2003) in order to consistently estimate the factors

and the number of factors.
4(hi): Examples include cross-sectional heteroskedasticity with no dependence,

cross-sectional heteroskedasticity with block-diagonal correlation structure of fixed
block size (Choi, 2012), AR(1) structure, among others. Block-diagonal structure is
motivated by the fact that in macroeconomic or financial applications when the id-
iosyncratic components represent industry-specific shocks, they are almost uncorre-
lated among the variables across different industries.

4(hii-hiii) There are two existing approaches to consistently estimate the idiosyn-
cratic covariance matrix in approximate factor models. One is simply V̂simple =

1
T ∑

T
t=1 ût û′t

provided we have the prior knowledge2 on the structure of the covariance matrix (e.g.
block diagonal)(Choi, 2012). The other approach is the principal orthogonal comple-
ment thresholding (POET) (Fan et al., 2013; Bai and Liao, 2013) in which V̂poet =
s( 1

T ∑
T
t=1 ût û′t) where s is a general thresholding function. Their method requires fur-

ther primitive assumptions on the idiosyncratics3. They show if 1√
N
+
√

logN
Ta
→ 0, then

||V̂−1
poet −V−1||spec = op(1)4 which implies V̂−1

i j,poet
p→V−1

i j .
We intend to test whether there has been time-variation since a changepoint in the

sample period, especially considerable variations that affect the consistent estimation
of the factors and their number. Bates et al. (2013) showed in general we need

√
hNT =

O(1/min(T,(NT )1/2)) for consistency of Bai and Ng (2002)’s estimator of the factor
number and

√
hNT = o(T−1/2) for mean square consistency of the PC estimator of

factors. Thus, the desired test would have non-trivial power against larger variations,
such as hNT = a/T with a fixed. The null and alternative hypothesis are

2If we don’t have the prior knowledge, V̂simple is nonsingular.
31) There is a constant c1 such that λmin(V ) > c1 and min

i, j
var(uit u jt) > c1. 2) There are constants

r1,r2,b1,b2 > 0 such that P(|uit |> s)≤ exp(−( s
b1
)r1 ) and P(| f jt |> s)≤ exp(−( s

b2
)r2 ) for any s > 0.

4||A||spec = λ
1/2
max(A′A)
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H0A : hNT = 0
H1A : hNT > 0

We test against the alternative hypothesis for the factor loading of a particular variable,
similar to Breitung and Eickmeier (2011). That is, we assume there is time variation
only in the loading λi and no time variation in loadings j 6= i. We will investigate the
likelihood during the sample period Ta+1 : T . For ease of notations, X and F represent
XTa+1:T and FTa+1:T respectively, and L is a T̃ × T̃ lower triangular matrix with all non-
zero elements equal to 1 in this section. Under normality, the conditional log-likelihood
is

lvec(X ′)|F(Λ0,hNT ,V,Σe) =−
T̃
2

log(2π)− 1
2

log|Σ(hNT )|

−1
2
[vec(X ′)−vec(Λ0F ′)]′Σ−1(hNT )[vec(X ′)−vec(Λ0F ′)]

where Σ(hNT ) = IT̃ ⊗V +hNT DF(L⊗ IkN)(IT̃ ⊗ Σ̃e)(L′⊗ IkN)D′F where Σ̃e is a kN×kN
sparse matrix with the only non-zero k× k block from the ik+1th element to the (i+
1)kth element on the diagonal being equal to Σe. The CMLE estimator of Λ0 under the
null hypothesis hNT = 0 is

Λ̂0 = X ′F(F ′F)−1

and the estimated residual u̇+ v̇ = vec(X ′)−vec(Λ̂0F ′) = (MF ⊗ IN)vec(X ′) = (MF ⊗
IN)(u+ v) where MF = IT̃ −F(F ′F)−1F ′.

Nyblom (1989) recommended the approximate LM statistic to test the null hypoth-
esis. In our settings, the self-normalized statistic for individual i can be expressed as

LMi =
1

T̃ 2V−1
ii

T̃

∑
τ=1

T

∑
t=Ta+τ

∂ f (Xt |Ft)
′

∂vec(Λ′)
G

T

∑
t=Ta+τ

∂ f (Xt |Ft)

∂vec(Λ′)

where f (Xt |Ft) is the Gaussian conditional density; G =Ci⊗Σe = (Ci⊗Σec)(Ci⊗Σ′ec)
where Ci is a N×N matrix with the ith diagonal being 1 and the others being 0 and
Σe = ΣecΣ′ec is the Cholesky decomposition. As

∂ f (Xt |Ft)

∂vec(Λ′)
= vec(FtX ′t V

−1)−vec(FtF ′t Λ̂
′V−1)

= vec(FtX ′t V
−1)−vec(FtF ′t (F

′F)−1F ′XV−1)

and
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T

∑
t=Ta+τ

(Ci⊗Σ
′
ec)

∂ f (Xt |Ft)

∂vec(Λ′)
=

T

∑
t=Ta+τ

(Ci⊗Σ
′
ec)[vec(Ft X ′t V

−1)−vec(Ft F ′t (F
′F)−1F ′XV−1)]

=
T

∑
t=Ta+τ

(Ci⊗Σ
′
ec)[(V

−1Xt)⊗Ft − (V−1X ′F(F ′F)−1Ft)⊗Ft ]

=
T

∑
t=Ta+τ

[(V−1
i. Xt)⊗ (Σ′ecFt)− (V−1

i. X ′F(F ′F)−1Ft)⊗ (Σ′ecFt)]

= Σ
′
ec[

T

∑
t=Ta+τ

FtV−1
i. Xt −

T

∑
t=Ta+τ

Ft F ′t (
T

∑
t=Ta+1

Ft F ′t )
−1

T

∑
t=Ta+1

FtV−1
i. Xt ]

In sum,

LMi =
1

T̃ 2V−1
ii

T̃

∑
τ=1

s′iτ Σesiτ

where

si,[T̃ r] =
[T̃ r]+Ta

∑
t=Ta+1

FtV−1
i. (ut + vt)−

[T̃ r]+Ta

∑
t=Ta+1

FtF ′t (
T

∑
t=Ta+1

FtF ′t )
−1

T

∑
t=Ta+1

FtV−1
i. (ut + vt)

=
[T̃ r]+Ta

∑
t=Ta+1

FtV−1
i. Xt −

[T̃ r]+Ta

∑
t=Ta+1

FtF ′t (
T

∑
t=Ta+1

FtF ′t )
−1

T

∑
t=Ta+1

FtV−1
i. Xt

Under the null hypothesis and assumptions 1 and 4, as T̃ →∞, 1√
T̃

∑
[T̃ r]+Ta
t=Ta+1 FtV−1

i. ut
D→√

V−1
ii Σ

1/2
F W1(r) where W1 is a k-dimensional standard Brownian motion and therefore

1√
T̃V−1

ii

si,[T̃ r]
D→ Σ

1/2
F (W1(r)− rW1(1))

LMi
D→
ˆ 1

0
(W1(r)− rW1(1))′Σ

1/2
F ΣeΣ

1/2
F (W1(r)− rW1(1))dr

Let F̃t = H ′Ft where H = (Λ′0Λ0/N)(F ′F̂/T )V−1
NT ; F̂ is

√
T times the eigenvectors cor-

responding to the k largest eigenvalues of the matrix XX ′ and VNT is the k×k diagonal
matrix of the first k largest eigenvalues of XX ′/(T N), as in Bai (2003). In practice, we
can consistently estimate the rotated factors F̃t rather than Ft . Rewriting si,[T̃ r] and LMi

by replacing Ft with F̃t yields s̃i,[T̃ r] and L̃Mi such that

s̃i,[T̃ r] = H ′si,[T̃ r]

Thus, as N,T → ∞,

1√
T̃V−1

ii

s̃i,[T̃ r]
D→ H̃ ′Σ1/2

F (W1(r)− rW1(1))
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L̃Mi
D→
ˆ 1

0
(W1(r)− rW1(1))′Σ

1/2
F H̃ΣeH̃ ′Σ1/2

F (W1(r)− rW1(1))dr

where H̃ = plim
N,T→∞

H.

The limit distribution of L̃Mi can be free from nuisance parameters, provided Σe is
replaced with Σ̃

−1
F where Σ̃F = H̃ ′ΣF H̃ = plim

N,T→∞

( 1
T ∑

T
t=1 F̃t F̃ ′t ). Therefore,

L̃Mi =
1

T̃ 2V−1
ii

T̃

∑
τ=1

s̃iτ Σ̃
−1
F s̃iτ

L̃Mi
D→
ˆ 1

0
(W1(r)− rW1(1))′(W1(r)− rW1(1))dr

which is the generalized Von Mises distribution with k degrees of freedom.
In practice, we need to estimate the number of factors k, the factors, Σ̃F and the id-

iosyncratic covariance matrix V . We use the subsample from t = 1 to Ta to consistently
estimate k, by Bai and Ng (2002)’s IC, while the factors are estimated using PC for the
full sample.

L̂Mi =
1

T̃ 2V̂−1
ii

T̃

∑
τ=1

ŝiτ Σ̂
−1
F ŝiτ

where

ŝi,[T̃ r] =
[T̃ r]+Ta

∑
t=Ta+1

F̂tV̂−1
i. Xt −

[T̃ r]+Ta

∑
t=Ta+1

F̂t F̂ ′t (
T

∑
t=Ta+1

F̂t F̂ ′t )
−1

T

∑
t=Ta+1

F̂tV̂−1
i. Xt

and Σ̂F = 1
Ta

∑
Ta
t=1 F̂t F̂ ′t can effectively avoid the issue of non-monotonic power.

Theorem 1: Under the null hypothesis, if T̃√
min(N,T 2)

= o(1) , then L̂Mi = L̃Mi+

op(1) as N,T, T̃ → ∞ . Thus, L̂Mi
D→
´ 1

0 (W1(r)− rW1(1))′(W1(r)− rW1(1))dr.
Comments on Theorem 1: T̃√

min(N,T 2)
= o(1) seems strict and requires a small T̃ .

In simulations, however, the test with a moderate T̃ can still have good size and power.

3 Models and asymptotics for I(1) factors
In this section, factors are also I(1) in the period from Ta to T with no cointegration
among them. Specifically, Ft =Ft−1+εt when t > Ta where E(εtε

′
t )=Σε . Assumptions

4(d)-(e) don’t hold any longer. Now the statistic is defined as

LMi =
1

T̃ 3V̂−1
ii

T̃

∑
τ=1

s′iτ Σesiτ
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1% 5% 10%
k=1 0.493 0.222 0.137
k=2 0.581 0.294 0.208
k=3 0.614 0.323 0.237
k=4 0.626 0.342 0.252

Table 1: Critical values of the distribution
´ 1

0 W̃ (r)′W̃ (r)dr by simulation

Under Assumptions 1 and 4, 1
T̃ 2 ∑

[T̃ r]+Ta
t=Ta+1 FtF ′t

D→Σ
1/2
ε

´ r
0 W1(r̃)W ′1(r̃)dr̃Σ

1/2
ε and 1

T̃ ∑
[T̃ r]+Ta
t=Ta+1 FtV−1

i. ut
D→´ r

0

√
V−1

ii Σ
1/2
ε W1(r̃)dW2(r̃) where W2 is a standard Brownian motion and independent

of W1, so

1

T̃
√

V−1
ii

si,[T̃ r]
D→ Σ

1/2
ε W̃ (r)

where W̃ (r)=
´ r

0 W1(r̃)dW2(r̃)−
´ r

0 W1(r̃)W ′1(r̃)dr̃(
´ 1

0 W1(r̃)W ′1(r̃)dr̃)−1 ´ 1
0 W1(r̃)dW2(r̃).

Consequently,

LMi
D→
ˆ 1

0
W̃ (r)′Σ1/2

ε ΣeΣ
1/2
ε W̃ (r)dr

As for stationary factors, one can rotate the factor F̃t =H ′Ft where H =(Λ′0Λ0/N)(F ′F̂/T 2)V−1
NT ;

F̂ is T times the eigenvectors corresponding to the k largest eigenvalues of the ma-
trix XX ′ and VNT is the k× k diagonal matrix of the first k largest eigenvalues of
XX ′/(T 2N), as in Bai (2004). Similarly above in Section 2, we define L̃Mi =

1
T̃ 3V−1

ii
∑

T̃
τ=1 s̃iτ Σ̃−1

ε s̃iτ

and

L̃Mi
D→
ˆ 1

0
W̃ (r)′W̃ (r)dr

We estimate L̃Mi by L̂Mi such that

L̂Mi =
1

V̂−1
ii T̃ 2

T̃

∑
τ=1

ŝiτ Σ̂
−1
ε ŝiτ

where Σ̂ε =
1

T̃−1 ∑
T−1
t=Ta+1(F̂t+1− F̂t)(F̂t+1− F̂t)

′.

Theorem 2: Under the null hypothesis, if T̃ 2√
min(Nτ2, T 3

T̃ )T
= o(1) , then L̂Mi =

L̃Mi +op(1) as N,T, T̃ → ∞ . Thus, L̂Mi
D→
´ 1

0 W̃ (r)′W̃ (r)dr.

4 Monte Carlo Results
In this section we present the simulation results of our test statistics in finite samples.
We consider a two-factor model with N = 50,100,150,200 and T = 100,150,200,250,
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which are typical in empirical applications. {Ft} is either i.i.d. N(0, I2) or random walk
with N(0, I2) error terms. We use Bai and Ng (2002)’s IC to estimate the number of
factors except for N = 50, where we use Onatski (2010)’s empirical distribution of
eigenvalues for better results. We study two kinds of idiosyncratic structure. One is
the block diagonal covariance matrix with the size of each block being 5 (Choi, 2012),
which satisfies Assumption 4(h)i. We generate each block by i.i.d. Wishart distribution
Wp(I5,5). The other is the following banded structure from (Bai and Liao, 2013) which
violates Assumption 4(h)i. We intend to investigate the effect of this assumption on the
size and power in finite samples.

u1t = ũ1t

u2t = ũ2t +a1ũ1t

u3t = ũ3t +a2ũ2t +b1ũ1t

uit = ũit +ai−1ũi−1,t +bi−2ũi−2,t + ci−3ũi−3,t , i≥ 4

where ai,bi,ci are i.i.d. N(0,0.72) and {ũit} are independent N(0,1) across both time
series and cross sections. The idiosyncratic covariance matrix is estimated by POET
from Fan et al. (2013). Specifically,

V̂i j =

{
1
T ∑

T
t=1 ûit û′jt if i = j

s( 1
T ∑

T
t=1 ûit û′jt) if i 6= j

where ûit is the residual from PC estimation and s(x) = sgn(x)(|x| − τi j) is the soft

thresholding rule with the threshold τi j =
√

V̂iiV̂j j(
√

(logN)/Ta + 1/
√

N) from Bai
and Liao (2013).

Loadings are generated by the random work, for i = 1, · · · ,N,

λit =

{
λi0 t ≤ Ta

λi,t−1 + eit t > Ta

where λi0 is i.i.d.N(

[
1
1

]
, I2); E(eite′it) =

a
T

[
1 σ2

λ

σ2
λ

1

]
such that a2 = 0,1,5,10,30,50

and σ2
λ

follows Uni f orm(0,0.9); Ta can be T
2 , T −10 or T −5. In the latter two cases,

T −Ta is considered to become fixed. We apply Andrews (2003)’s subsampling-like
method to compute the critical values.

Tables 2-5 show the simulation results. In general, the empirical sizes are close
to the nominal size, but the rejection frequencies are decreasing in N and T . When
N = 50, it is sometimes oversized because the number of factors are more difficult to
estimate in small samples. The power are also satisfied and it seems that the test is
consistent in that the power grows to 1 as N and T increase. Violation of Assumption
4(h)i seems not affect the test results.

The tests designed for structural breaks, such as likelihood ratio, Wald and La-
grange multiplier statistics in Breitung and Eickmeier (2011), also have power for
persistent variations. In Figure 4.1, We compare our LM statistic with them, which
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Block Diagonal
I(0) Factors I(1) Factors

T = 100 T = 150 T = 200 T = 100 T = 150 T = 200
N = 50 0.049 0.041 0.032 0.092 0.066 0.057
N = 100 0.053 0.037 0.034 0.037 0.023 0.020
N = 150 0.050 0.033 0.025 0.032 0.029 0.024
N = 200 0.040 0.031 0.024 0.036 0.023 0.024

Banded
I(0) Factors I(1) Factors

T = 100 T = 150 T = 200 T = 100 T = 150 T = 200
N = 50 0.082 0.050 0.046 0.042 0.033 0.034
N = 100 0.060 0.044 0.038 0.043 0.037 0.030
N = 150 0.058 0.042 0.035 0.046 0.034 0.031
N = 200 0.055 0.038 0.029 0.043 0.033 0.030

Table 2: Empirical sizes for the models with Ta = T
2 . The nominal size is 0.05 and

2500 replications are used.

Block Diagonal
I(0) Factors I(1) Factors

T = 100 T = 150 T = 200 T = 100 T = 150 T = 200
a2 = 1 0.184 0.229 0.278 0.508 0.642 0.745
a2 = 5 0.832 0.907 0.938 0.940 0.972 0.980
a2 = 10 0.974 0.989 0.994 0.978 0.984 0.983
a2 = 30 0.997 0.998 0.998 0.891 0.923 0.936
a2 = 50 0.992 0.995 0.994 0.765 0.843 0.888

Banded
I(0) Factors I(1) Factors

T = 100 T = 150 T = 200 T = 100 T = 150 T = 200
a2 = 1 0.269 0.343 0.402 0.612 0.746 0.824
a2 = 5 0.927 0.964 0.980 0.971 0.991 0.996
a2 = 10 0.995 0.998 1.000 0.993 0.996 0.996
a2 = 30 0.998 0.999 0.999 0.925 0.953 0.966
a2 = 50 0.997 0.997 0.997 0.835 0.897 0.924

Table 3: Power for the models with Ta =
T
2 .

Block Diagonal Banded
T̃ = 10 T̃ = 5 T̃ = 10 T̃ = 5

N = 50 0.069 0.052 0.068 0.057
N = 100 0.070 0.053 0.070 0.059
N = 150 0.068 0.056 0.071 0.065
N = 200 0.067 0.060 0.071 0.062

Table 4: Empirical sizes for the models with T̃ = 5,10
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Block Diagonal Banded
T̃ = 10 T̃ = 5 T̃ = 10 T̃ = 5

a2 = 5 0.194 0.091 0.218 0.103
a2 = 10 0.398 0.158 0.458 0.181
a2 = 30 0.805 0.451 0.865 0.507
a2 = 50 0.920 0.619 0.957 0.680

Table 5: Power for the models with T̃ = 5,10
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Figure 4.1: Power of test statistics for testing persistent variations, T = 150, N = 100,
I(0) factors, block diagonal idiosyncratics

assume there is a break at Ta. It is obvious that LR tests seriously suffer from the issue
of non-monotonic power. The performances of Wald and LM for breaks are close to
the LM for temporal instability, but are inferior to the latter when the variation is large.
One should note that our LM test is specially designed to detect the temporal variations
after the break point, while break tests can not tell what happens afterwards. As we
said, persistent time variations are more harmful in the sense that the model can not be
transformed into a stable one with increased number of factors.

5 Application
One application of factor models is nowcasting quarterly GDP growth using hundreds
of predictors with different frequencies (Giannone et al. (2008) for Fed and Angelini
et al. (2011) for ECB, for example). In practice, the performance is mixed and varies
with the specific country to predict. It has good performance in the US and Euro Erea,
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but fails to work well in the UK during and after the recession. One can use various
refinements, such as variable pre-selection prior to factor extraction and downweight-
ing past information, but the improvement is limited after the recent financial crisis.
It implies that structural instability is a major concern. One alternative is the factor
model with time-varying loadings and stochastic volatility proposed in Del Negro and
Otrok (2008). Therefore, it would be helpful to test whether there has been temporal
instability since the crisis.

The raw dataset contains 152 series including 134 UK variables and 18 interna-
tional variables from US and Germany listed in the Appendix. The series are either
monthly or daily, and need to be transformed into a quarterly and stationary quan-
tity. We use only the series for which there are less the 1/3 of missing data and adjust
for ouliers and missing data to create a balanced dataset. Although the tradition is to
use as many series as possible, one reason behind some unsatisfactory performance
is perhaps the adverse influence of uninformative predictors for the target variable to
forecast. Boivin and Ng (2006) showed that as few as 50 pre-selected predictors can
yield better forecasts than 147 predictors. Recently several attempts have been made to
improve PCA forecasts, including pre-selection of the predictors (Bai and Ng, 2008a)
and boosting (Bai and Ng, 2009), among others. We pre-select 55 variables using the
elasticity net, which is known as an effective tool to perform variable selection and
shrinkage simultaneously (Bai and Ng, 2008a).

We test whether there was temporal instability after January 2007. Onatski (2010)’s
criterion indicates that the number of factors is 11, 12 or 13 depending on the change-
point, which is a little larger than that extracted from the US dataset. The relative
rejection rate from 2007:01 to 2009:12 is shown in Figure 5.1. It can be seen that the
time variation was most serious before 2009 but gradually faded away afterwards.

6 Conclusion
In the paper, we adapt Nyblom (1989)’s test statistic for factor models to check whether
there is persistent time-variation in factor loadings, which might affect the consistency
of factor estimates and therefore the forecasting performance of factor-augmented re-
gressions. Although the tests designed for the alternatives of multiple breaks also have
power for time-varying parameters, our statistic is more powerful to detect the persis-
tence. Slightly strong restrictions are imposed on the relation between the cross-section
dimension, the size of the whole sample and the subsample of temporal instability in
order to achieve the desirable limit null distribution. In finite samples, however, the
restrictions seem not to affect the empirical size and power. Also, we find the small
effect of different idiosyncratic structure on the test performance. We apply the test
statistic to the UK dataset and find that the time variation was most serious before 2009
but gradually faded away afterwards.
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Figure 5.1: Relative rejection rates from 2007:01 to 2009:12

Appendices

.1 Proof of Theorem 1
Let δNT = min(

√
N,
√

T ) and Ji,N = { j : V−1
i j 6= 0 or V̂−1

i j 6= 0}. Under assumption
4(h), the number of elements in Ji,N is finite almost surely when N→∞. Following Bai
(2003),

F̂t −H ′Ft = V−1
NT (

1
T

T

∑
s=1

F̂sζst +
1
T

T

∑
s=1

F̂sηst +
1
T

T

∑
s=1

F̂sξst +
1
T

T

∑
s=1

F̂sγst)

where ζst = [u′sut−E(u′sut)]/N; ηst = F ′s Λ′ut/N; ξst = F ′t Λ′us/N; γst = E(u′sut)/N. For
convenience, we use the following notations

F̂t = B0t +B1t +B2t +B3t +B4t

in which B0t = F̃t ; B1t =V−1
NT

1
T ∑

T
s=1 F̂sζst , B2t =V−1

NT
1
T ∑

T
s=1 F̂sηst , B3t =V−1

NT
1
T ∑

T
s=1 F̂sξst ,

B4t =V−1
NT

1
T ∑

T
s=1 F̂sγst .

Lemma 1. (Breitung and Eickmeier, 2011) 1
T ∑

T
t=1 F̂t F̂ ′t = 1

T ∑
T
t=1 F̃t F̃ ′t +OP(δ

−2
NT ) =

Σ̃F +oP(1). Therefore, Σ̂
−1
F = Σ̃

−1
F +oP(1).

Lemma 2. ∑
T
t=Ta+1 || 1T ∑

T
s=1 F̂sζst ||2 = OP(

T̃
N δ
−2
NT ) i.e., ∑

T
t=Ta+1 ||B1t ||2 = OP(

T̃
N δ
−2
NT )

Lemma 3. ∑
T
t=Ta+1 || 1T ∑

T
s=1 F̂sηst ||2 = OP(

T̃
N ) i.e., ∑

T
t=Ta+1 ||B2t ||2 = OP(

T̃
N )

Lemma 4. ∑
T
t=Ta+1 || 1T ∑

T
s=1 F̂sξst ||2 = OP(

T̃
N δ
−2
NT ) i.e., ∑

T
t=Ta+1 ||B3t ||2 = OP(

T̃
N δ
−2
NT )
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Lemma 5. ∑
T
t=Ta+1 || 1T ∑

T
s=1 F̂sγst ||2 = Op(

T̃
T δ
−2
NT ) i.e., ∑

T
t=Ta+1 ||B4t ||2 = Op(

T̃
T δ
−2
NT )

Lemma 6. 1
T̃ ∑

T
t=Ta+1 F̂tV̂−1

i. Xt =
1
T̃ ∑

T
t=Ta+1 F̃tV−1

i. Xt +op(1) when N,T → ∞.

Lemma 7. (Bai, 2003) 1
T ∑

T
s=1 ||F̂s−H ′Fs||2 = Op(δ

−2
NT )

Lemma 8. (Bai, 2003) ||H||= Op(1)

Proof of Lemma 2

T

∑
t=Ta+1

|| 1
T

T

∑
s=1

F̂sζst ||2 =
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

(F̂s−H ′Fs +H ′Fs)ζst ||2

≤
T

∑
t=Ta+1

(|| 1
T

T

∑
s=1

(F̂s−H ′Fs)ζst ||+ ||
1
T

T

∑
s=1

H ′Fsζst ||)2

≤ 2(
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

(F̂s−H ′Fs)ζst ||2 +
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

H ′Fsζst ||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
NT

T

∑
t=Ta+1

T

∑
s=1

[N−
1
2

N

∑
i=1

(uisuit −E(uisuit))]
2

+
1

NT

T

∑
t=Ta+1

|| 1√
NT

T

∑
s=1

N

∑
i=1

Fs(uisuit −E(uisuit))||2||H ′||2)

= Op(
T̃
N

δ
−2
NT )+Op(

T̃
NT

)

= Op(
T̃
N

δ
−2
NT )

The third inequality holds by the Cauchy-Schwarz Inequality. The second identity
uses Assumption 4(c), 4(d) and Lemma 7, 8. The lemma is proved following ||VNT ||=
Op(1) from (Bai, 2003).

Proof of Lemma 3
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T

∑
t=Ta+1

|| 1
T

T

∑
s=1

F̂sηst ||2 =
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

(F̂s−H ′Fs +H ′Fs)ηst ||2

≤
T

∑
t=Ta+1

(|| 1
T

T

∑
s=1

(F̂s−H ′Fs)ηst ||+ ||
1
T

T

∑
s=1

H ′Fsηst ||)2

≤ 2(
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

(F̂s−H ′Fs)ηst ||2 +
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

H ′Fsηst ||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
N2T

T

∑
t=Ta+1

T

∑
s=1

(F ′s Λ
′ut)

2

+
T

∑
t=Ta+1

|| 1
NT

T

∑
s=1

FsF ′s Λ
′ut ||2||H ′||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
NT

T

∑
t=Ta+1

T

∑
s=1
||F ′s ||2||N−

1
2 Λ
′ut ||2

+|| 1
T

T

∑
s=1

FsF ′s ||2
1
N

T

∑
t=Ta+1

||N−
1
2 Λ
′ut ||2||H ′||2)

= Op(
T̃
N

δ
−2
NT )+Op(

T̃
N
)

= Op(
T̃
N
)

The second identity follows from Assumption 1, 4(f) and Lemma 7, 8.
Proof of Lemma 4
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T

∑
t=Ta+1

|| 1
T

T

∑
s=1

F̂sξst ||2 =
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

(F̂s−H ′Fs +H ′Fs)ξst ||2

≤
T

∑
t=Ta+1

(|| 1
T

T

∑
s=1

(F̂s−H ′Fs)ξst ||+ ||
1
T

T

∑
s=1

H ′Fsξst ||)2

≤ 2(
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

(F̂s−H ′Fs)ξst ||2 +
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

H ′Fsξst ||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
N2T

T

∑
t=Ta+1

T

∑
s=1

(F ′t Λ
′us)

2

+
T

∑
t=Ta+1

|| 1
NT

T

∑
s=1

Fsu′sΛFt ||2||H ′||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
NT

T

∑
t=Ta+1

T

∑
s=1
||F ′t ||2||N−

1
2 Λ
′us||2

+
1

NT

T

∑
t=Ta+1

||Ft ||2||
1√
NT

T

∑
s=1

Fsu′sΛ||2||H ′||2)

= Op(
T̃
N

δ
−2
NT )+Op(

T̃
NT

)

= Op(
T̃
N

δ
−2
NT )

The second identity holds because of Assumption 1, 4(e), 4(f) and Lemma 7, 8.
Proof of Lemma 5

T

∑
t=Ta+1

|| 1
T

T

∑
s=1

F̂sγst ||2 =
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

(F̂s−H ′Fs +H ′Fs)γst ||2

≤
T

∑
t=Ta+1

(|| 1
T

T

∑
s=1

(F̂s−H ′Fs)γst ||+ ||
1
T

T

∑
s=1

H ′Fsγst ||)2

≤ 2(
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

(F̂s−H ′Fs)γst ||2 +
T

∑
t=Ta+1

|| 1
T

T

∑
s=1

H ′Fsγst ||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
N2T

T

∑
t=Ta+1

T

∑
s=1

[
N

∑
i=1

E(uisuit)]
2

+
1

NT

T

∑
t=Ta+1

|| 1√
NT

T

∑
s=1

N

∑
i=1

FsE(uisuit)||2||H ′||2)

= Op(
T̃
T

δ
−2
NT )+Op(

T̃
T 2 )

= Op(
T̃
T

δ
−2
NT )
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The second identity is implied by Assumption 1, 4(a) and Lemma 7, 8.
Proof of Lemma 6

1
T̃

T

∑
t=Ta+1

F̂tV̂−1
i. Xt =

1
T̃

T

∑
t=Ta+1

4

∑
m=0

Bmt ∑
j∈Ji,N

V̂−1
i j X jt

=
1
T̃

T

∑
t=Ta+1

4

∑
m=0

Bmt ∑
j∈Ji,N

(V−1
i j +op(1))X jt

Note that 1
T̃ ∑

T
t=Ta+1 F̃tV−1

i. Xt =
1
T̃ ∑

T
t=Ta+1 B0t ∑ j∈Ji,N V−1

i j X jt . The order of 1
T̃ ∑

T
t=Ta+1 ∑

4
m=0 Bmt ∑ j∈Ji,N V−1

i j X jt
is higher than that of
1
T̃ ∑

T
t=Ta+1 ∑

4
m=0 Bmt ∑ j∈Ji,N op(1)X jt , since the number of elements in Ji,N is finite al-

most surely when N→∞. Thus we focus on the mth (m 6= 0) bias term 1
T̃ ∑

T
t=Ta+1 BmtV−1

i j X jt
which is is bounded by

|| 1
T̃

T

∑
t=Ta+1

BmtV−1
i j X jt || ≤

1
T̃
(

T

∑
t=Ta+1

||Bmt ||2)
1
2 (

T

∑
t=Ta+1

(V−1
i j X jt)

2)
1
2

By Lemmas 2-5, the dominant bias term is the 2th term or the 4th term depending
on min(N,T 2), i.e. || 1T̃ ∑

T
t=Ta+1 BmtV−1

i j X jt ||= 1
T̃ OP(

T̃
min(N,T 2)

)
1
2 OP(T̃ )

1
2 = op(1).

Proof of Theorem 1:

V̂−1
ii L̂Mi =

1
T̃ 2

T̃

∑
t=1

Ta+t

∑
s=Ta+1

F̂ ′s V̂−1
i. XsΣ̂

−1
F

Ta+t

∑
s=Ta+1

F̂sV̂−1
i. Xs (I)

− 2
T̃ 2 (

T̃

∑
t=1

Ta+t

∑
s=Ta+1

F̂ ′s V̂−1
i. XsΣ̂

−1
F

Ta+t

∑
s=Ta+1

F̂sF̂ ′s )(
T

∑
s=Ta+1

F̂sF̂ ′s )
−1

T

∑
s=Ta+1

F̂sV̂−1
i. Xs (II)

+
1

T̃ 2

T

∑
s=Ta+1

F̂ ′s V̂−1
i. Xs(

T

∑
s=Ta+1

F̂sF̂ ′s )
−1(

T̃

∑
t=1

Ta+t

∑
s=Ta+1

F̂sF̂ ′s Σ̂
−1
F

Ta+t

∑
s=Ta+1

F̂sF̂ ′s )

(
T

∑
s=Ta+1

F̂sF̂ ′s )
−1

T

∑
s=Ta+1

F̂sV̂−1
i. Xs (III)

First consider (I), which can be rewritten as 1
T̃ 2 ∑

T̃
t=1 ∑

Ta+t
s=Ta+1 ∑

4
m=0 B′ms ∑ j∈Ji,N (V

−1
i j +

op(1))X js[Σ̃
−1
F +oP(1)]∑

Ta+t
s=Ta+1 ∑

4
n=0 Bns ∑ j∈Ji,N (V

−1
i j +op(1))X js. Similar to the proof

of Lemma 6, we focus on the mnth (n 6= 0) bias term
1

T̃ 2 ∑
T̃
t=1 ∑

Ta+t
s=Ta+1 B′msV

−1
i j X jsΣ̃

−1
F ∑

Ta+t
s=Ta+1 BnsV−1

i j X js , which is bounded by
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|| 1
T̃ 2 ∑

T̃
t=1 ∑

Ta+t
s=Ta+1 B′msV

−1
i j X js ∑

Ta+t
s=Ta+1 BnsV−1

i j X js||||Σ̃−1
F || and

|| 1
T̃ 2 ∑

T̃
t=1 ∑

Ta+t
s=Ta+1 B′msV

−1
i j X js ∑

Ta+t
s=Ta+1 BnsV−1

i j X js||

≤ 1
T̃ 2 (∑

T̃
t=1 ||∑

Ta+t
s=Ta+1 B′msV

−1
i j X js||2)

1
2 (∑T̃

t=1 ||∑
Ta+t
s=Ta+1 BnsV−1

i j X js||2)
1
2

≤ 1
T̃ 2 (∑

T̃
t=1 ∑

Ta+t
s=Ta+1 ||B′ms||2 ∑

t
s=1(V

−1
i j X js)

2)
1
2 (∑T̃

t=1 ∑
Ta+t
s=Ta+1 ||Bns||2 ∑

t
s=1(V

−1
i j X js)

2)
1
2

≤ 1
T̃ (∑

T
s=Ta+1 ||B′ms||2 ∑

T
s=Ta+1(V

−1
i j X js)

2)
1
2 (∑T

s=Ta+1 ||Bns||2 ∑
T
s=Ta+1(V

−1
i j X js)

2)
1
2

= 1
T̃ (Op(T̃ )Op(T̃ ))

1
2 (OP(

T̃
min(N,T 2)

)Op(T̃ ))
1
2

= OP(
T̃√

min(N,T 2)
)

The first identity follows from Lemmas 2-5, as the dominant bias term is the 02th term
or the 04th term depending on min(N,T 2).

Now consider (II). Due to Lemmas 1 and 6, we only need to study the term
1

T̃ 2 (∑
T̃
t=1 ∑

Ta+t
s=Ta+1 F̂ ′s V̂−1

i. XsΣ̂
−1
F ∑

Ta+t
s=Ta+1 F̂sF̂ ′s ) which is rewritten as

1
T̃ 2 (∑

T̃
t=1 ∑

Ta+t
s=Ta+1 ∑

4
m=0 B′ms ∑ j∈Ji,N (V

−1
i j +op(1))X js[Σ̃

−1
F +oP(1)]∑

Ta+t
s=Ta+1 ∑

4
n=0 Bns ∑

4
z=0 B′zs).

The mnzth (z 6= 0) bias term is bounded by
|| 1

T̃ 2 ∑
T̃
t=1 ∑

Ta+t
s=Ta+1 B′msV

−1
i j X js ∑

Ta+t
s=Ta+1 BnsB′zs||||Σ̃−1

F || and by Lemmas 2-5

|| 1
T̃ 2 ∑

T̃
t=1 ∑

Ta+t
s=Ta+1 B′msV

−1
i j X js ∑

Ta+t
s=Ta+1 BnsB′zs||

≤ 1
T̃ (∑

T
s=Ta+1 ||B′ms||2 ∑

T
s=Ta+1(V

−1
i j X js)

2)
1
2 (∑T

s=Ta+1 ||Bns||2 ∑
T
s=Ta+1 ||B′zs||2)

1
2

= 1
T̃ (Op(T̃ )Op(T̃ ))

1
2 (OP(

T̃
min(N,T 2)

)Op(T̃ ))
1
2

= OP(
T̃√

min(N,T 2)
)

Finally consider (III). Due to Lemmas 1 and 6, we only need to study the term

1
T̃ 2 (

T̃

∑
t=1

Ta+t

∑
s=Ta+1

F̂sF̂ ′s Σ̂
−1
F

Ta+t

∑
s=Ta+1

F̂sF̂ ′s ) =
1

T̃ 2 (
T̃

∑
t=1

Ta+t

∑
s=Ta+1

4

∑
m=0

Bms

4

∑
n=0

B′ns)[Σ̃
−1
F +oP(1)]

Ta+t

∑
s=Ta+1

4

∑
z=0

Bzs

4

∑
l=0

B′ls)

The mnzlth (l 6= 0) bias term is bounded by || 1
T̃ 2 ∑

T̃
t=1 ∑

Ta+t
s=Ta+1 BmsB′ns ∑

Ta+t
s=Ta+1 BzsB′ls||||Σ̃

−1
F ||

and by Lemmas 2-5

|| 1
T̃ 2 ∑

T̃
t=1 ∑

Ta+t
s=Ta+1 BmsB′ns ∑

Ta+t
s=Ta+1 BzsB′ls||

≤ 1
T̃ (∑

T
s=Ta+1 ||Bms||2 ∑

T
s=Ta+1 ||B′ns||2)

1
2 (∑T

s=Ta+1 ||Bzs||2 ∑
T
s=Ta+1 ||B′ls||2)

1
2

= 1
T̃ (Op(T̃ )Op(T̃ ))

1
2 (OP(

T̃
min(N,T 2)

)Op(T̃ ))
1
2

= OP(
T̃√

min(N,T 2)
)

The proof is completed by Assumption 4(h)iii.
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.2 Proof of Theorem 2
Different from the other parts in the paper, F̂ in this section is T times the eigenvectors
corresponding to the k largest eigenvalues of the matrix XX ′ as in Bai (2004). Let τ =

T√
T̃ 2+T

∈ [1,
√

T ] and ϕNT = min(
√

Nτ,T ). The proof is similar to that for Theorem

1.

F̂t −H ′Ft = V−1
NT (

1
T 2

T

∑
s=1

F̂sζst +
1

T 2

T

∑
s=1

F̂sηst +
1

T 2

T

∑
s=1

F̂sξst +
1

T 2

T

∑
s=1

F̂sγst)

F̂t = B0t+ B1t +B2t +B3t +B4t

Lemma 9. 1
T ∑

T
s=1 ||F̂s−H ′Fs||2 = ϕ

−2
NT .

Lemma 10. ∑
T
t=Ta+1 || 1

T 2 ∑
T
s=1 F̂sζst ||2 = OP(

T̃
NT τ2 ) i.e., ∑

T
t=Ta+1 ||B1t ||2 = OP(

T̃
NT τ2 )

Lemma 11. ∑
T
t=Ta+1 || 1

T 2 ∑
T
s=1 F̂sηst ||2 = OP(

T̃
Nτ4 ) i.e., ∑

T
t=Ta+1 ||B2t ||2 = OP(

T̃
Nτ4 )

Lemma 12. ∑
T
t=Ta+1 || 1

T 2 ∑
T
s=1 F̂sξst ||2 = OP(

T̃ 2

NT τ2 ) i.e., ∑
T
t=Ta+1 ||B3t ||2 = OP(

T̃ 2

NT τ2 )

Lemma 13. ∑
T
t=Ta+1 || 1

T 2 ∑
T
s=1 F̂sγst ||2 = Op(

T̃
T 3 ϕ

−2
NT )+Op(

T̃ 3

T 4 ) i.e., ∑
T
t=Ta+1 ||B4t ||2 =

Op(
T̃
T 3 ϕ

−2
NT )+Op(

T̃ 3

T 4 )

Lemma 14. 1
T̃ 2 ∑

T
t=Ta+1 F̂tV̂−1

i. Xt =
1

T̃ 2 ∑
T
t=Ta+1 F̃tV−1

i. Xt +op(1) when N,T → ∞.

Lemma 15. 1
Ta

∑
Ta
t=1 F̂t F̂t

′= 1
Ta

∑
Ta
t=1 F̃t F̃t

′+oP(1)= Σ̃F +oP(1). Therefore, ( 1
Ta

∑
Ta
t=1 F̂t F̂t

′)−1 =

Σ̃
−1
F +oP(1).

Lemma 16. 1
T̃ 2 ∑

T
t=Ta+1 F̂t F̂t

′ = 1
T̃ 2 ∑

T
t=Ta+1 F̃t F̃t

′+oP(1), when N,T → ∞.

Proof of Lemma 9 (Similar to that in Bai (2003) or Bai (2004), omitted)
Proof of Lemma 10
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T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

F̂sζst ||2 =
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs +H ′Fs)ζst ||2

≤
T

∑
t=Ta+1

(|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs)ζst ||+ ||
1

T 2

T

∑
s=1

H ′Fsζst ||)2

≤ 2(
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs)ζst ||2 +
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

H ′Fsζst ||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
NT 3

T

∑
t=Ta+1

T

∑
s=1

[N−
1
2

N

∑
i=1

(uisuit −E(uisuit))]
2

+
1

NT 3

T

∑
t=Ta+1

|| 1√
NT

T

∑
s=1

N

∑
i=1

Fs(uisuit −E(uisuit))||2||H ′||2)

≤ Op(
T̃

NT 2 ϕ
−2
NT )

+
2

NT 4

T

∑
s=1
||Fs||2

T

∑
t=Ta+1

T

∑
s=1

[N−
1
2

N

∑
i=1

(uisuit −E(uisuit))]
2||H ′||2)

= Op(
T̃

NT 2 ϕ
−2
NT )+Op(

T̃
NT τ2 )

= Op(
T̃

NT τ2 )

Proof of Lemma 11
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T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

F̂sηst ||2 =
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs +H ′Fs)ηst ||2

≤
T

∑
t=Ta+1

(|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs)ηst ||+ ||
1

T 2

T

∑
s=1

H ′Fsηst ||)2

≤ 2(
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs)ηst ||2 +
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

H ′Fsηst ||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
N2T 3

T

∑
t=Ta+1

T

∑
s=1

(F ′s Λ
′ut)

2

+
1

T 2

T

∑
t=Ta+1

|| 1
NT

T

∑
s=1

FsF ′s Λ
′ut ||2||H ′||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
NT 3

T

∑
t=Ta+1

T

∑
s=1
||F ′s ||2||N−

1
2 Λ
′ut ||2

+|| 1
T 2

T

∑
s=1

FsF ′s ||2
1
N

T

∑
t=Ta+1

||N−
1
2 Λ
′ut ||2||H ′||2)

= Op(
T̃

NT τ2 ϕ
−2
NT )+Op(

T̃
Nτ4 )

= Op(
T̃

Nτ4 )

Proof of Lemma 12
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T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

F̂sξst ||2 =
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs +H ′Fs)ξst ||2

≤
T

∑
t=Ta+1

(|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs)ξst ||+ ||
1

T 2

T

∑
s=1

H ′Fsξst ||)2

≤ 2(
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs)ξst ||2 +
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

H ′Fsξst ||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
N2T 3

T

∑
t=Ta+1

T

∑
s=1

(F ′t Λ
′us)

2

+
1

T 2

T

∑
t=Ta+1

|| 1
NT

T

∑
s=1

Fsu′sΛFt ||2||H ′||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
NT 3

T

∑
t=Ta+1

T

∑
s=1
||F ′t ||2||N−

1
2 Λ
′us||2

+
1

NT 3

T

∑
t=Ta+1

||Ft ||2||
1√
NT

T

∑
s=1

Fsu′sΛ||2||H ′||2)

≤ Op(
T̃ 2

NT 2 ϕ
−2
NT )+

2
NT 4

T

∑
t=Ta+1

||Ft ||2
T

∑
s=1
||Fs||2

T

∑
s=1
||N−

1
2 u′sΛ||2||H ′||2

= Op(
T̃ 2

NT 2 ϕ
−2
NT )+Op(

T̃ 2

NT τ2 )

= Op(
T̃ 2

NT τ2 )

Proof of Lemma 13

T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

F̂sγst ||2 =
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs +H ′Fs)γst ||2

≤
T

∑
t=Ta+1

(|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs)γst ||+ ||
1

T 2

T

∑
s=1

H ′Fsγst ||)2

≤ 2(
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

(F̂s−H ′Fs)γst ||2 +
T

∑
t=Ta+1

|| 1
T 2

T

∑
s=1

H ′Fsγst ||2)

≤ 2(
1
T

T

∑
s=1
||F̂s−H ′Fs||2

1
N2T 3

T

∑
t=Ta+1

T

∑
s=1

[
N

∑
i=1

E(uisuit)]
2

+
1

NT 3

T

∑
t=Ta+1

|| 1√
NT

T

∑
s=1

N

∑
i=1

FsE(uisuit)||2||H ′||2)

≤ Op(
T̃
T 3 ϕ

−2
NT )+Op(

T̃ 3

T 4 )
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Proof of Lemma 14

1
T̃ 2

T

∑
t=Ta+1

F̂tV̂−1
i. Xt =

1
T̃ 2

T

∑
t=Ta+1

4

∑
m=0

Bmt ∑
j∈Ji,N

V̂−1
i j X jt

=
1

T̃ 2

T

∑
t=Ta+1

4

∑
m=0

Bmt ∑
j∈Ji,N

(V−1
i j +op(1))X jt

Note that 1
T̃ 2 ∑

T
t=Ta+1 F̃tV−1

i. Xt =
1

T̃ 2 ∑
T
t=Ta+1 B0t ∑ j∈Ji,N V−1

i j X jt . The order of 1
T̃ 2 ∑

T
t=Ta+1 ∑

4
m=0 Bmt ∑ j∈Ji,N V−1

i j X jt
is higher than that of
1

T̃ 2 ∑
T
t=Ta+1 ∑

4
m=0 Bmt ∑ j∈Ji,N op(1)X jt , since the number of elements in Ji,N is finite al-

most surely when N→∞. Thus we focus on the mth (m 6= 0) bias term 1
T̃ 2 ∑

T
t=Ta+1 BmtV−1

i j X jt
which is is bounded as

|| 1
T̃ 2

T

∑
t=Ta+1

BmtV−1
i j X jt || ≤

1
T̃ 2 (

T

∑
t=Ta+1

||Bmt ||2)
1
2 (

T

∑
t=Ta+1

(V−1
i j X jt)

2)
1
2

The dominant bias term is the 3th term or the 4th term depending on min(Nτ2, T 3

T̃ ),

i.e. || 1
T̃ 2 ∑

T
t=Ta+1 BmtV−1

i j X jt || ≤ 1
T̃ 2 OP(

T̃ 2

min(Nτ2, T 3
T̃ )T

)
1
2 OP(T̃ 2)

1
2 = op(1).

Proof of Lemma 15
1
Ta

∑
Ta
t=1 F̂t F̂t

′ = 1
Ta

∑
Ta
t=1 ∑

4
m=0 Bmt ∑

4
n=0 B′nt .

|| 1
Ta

Ta

∑
t=1

BmtB′nt || ≤
1
Ta

(
Ta

∑
t=1
||Bmt ||2)

1
2 (

Ta

∑
t=1
||Bnt ||2)

1
2

Similar to Lemmas 10-13,

Ta

∑
t=1
||B1t ||2 = Op(

Ta

NT τ2 )

Ta

∑
t=1
||B2t ||2 = Op(

Ta

Nτ4 )

Ta

∑
t=1
||B3t ||2 = Op(

Ta

NT τ2 )

Ta

∑
t=1
||B4t ||2 = Op(

Ta

T 3 ϕ
−2
NT )+Op(

T 2
a

T 4 )

The dominant bias term is the 02th term or the 04th term depending on min(Nτ2, T 4

Taτ2 ),

i.e. OP(
1

min(Nτ2, T 4
Taτ2 )τ

2
)

1
2 .

Proof of Lemma 16 (similar to Lemma 14, omitted)
Proof of Theorem 2:
(I)
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|| 1
T̃ 3 ∑

T̃
t=1 ∑

Ta+t
s=Ta+1 B′msV

−1
i j X js ∑

Ta+t
s=Ta+1 BnsV−1

i j X js||

≤ 1
T̃ 3 (∑

T̃
t=1 ||∑

Ta+t
s=Ta+1 B′msV

−1
i j X js||2)

1
2 (∑T̃

t=1 ||∑
Ta+t
s=Ta+1 BnsV−1

i j X js||2)
1
2

≤ 1
T̃ 3 (∑

T̃
t=1 ∑

Ta+t
s=Ta+1 ||B′ms||2 ∑

t
s=1(V

−1
i j X js)

2)
1
2 (∑T̃

t=1 ∑
Ta+t
s=Ta+1 ||Bns||2 ∑

t
s=1(V

−1
i j X js)

2)
1
2

≤ 1
T̃ 2 (∑

T
s=Ta+1 ||B′ms||2 ∑

T
s=Ta+1(V

−1
i j X js)

2)
1
2 (∑T

s=Ta+1 ||Bns||2 ∑
T
s=Ta+1(V

−1
i j X js)

2)
1
2

= 1
T̃ 2 (Op(T̃ 2)Op(T̃ 2))

1
2 (OP(

T̃ 2

min(Nτ2, T 3
T̃ )T

)Op(T̃ 2))
1
2

= OP(
T̃ 2√

min(Nτ2, T 3
T̃ )T

)

(II)

|| 1
T̃ 3 ∑

T̃
t=1 ∑

Ta+t
s=Ta+1 B′msV

−1
i j X js ∑

Ta+t
s=Ta+1 BnsB′zs||

≤ 1
T̃ 2 (∑

T
s=Ta+1 ||B′ms||2 ∑

T
s=Ta+1(V

−1
i j X js)

2)
1
2 (∑T

s=Ta+1 ||Bns||2 ∑
T
s=Ta+1 ||B′zs||2)

1
2

= OP(
T̃ 2√

min(Nτ2, T 3
T̃ )T

)

(III)

|| 1
T̃ 3 ∑

T̃
t=1 ∑

Ta+t
s=Ta+1 BmsB′ns ∑

Ta+t
s=Ta+1 BzsB′ls||

≤ 1
T̃ 2 (∑

T
s=Ta+1 ||Bms||2 ∑

T
s=Ta+1 ||B′ns||2)

1
2 (∑T

s=Ta+1 ||Bzs||2 ∑
T
s=Ta+1 ||B′ls||2)

1
2

= OP(
T̃ 2√

min(Nτ2, T 3
T̃ )T

)
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.3 Dataset
Release Series Logs Diff Filter Delay

GFK consumer confidence Aggregate balance 0 1 3 0

GFK consumer confidence
How does the financial situation of your household 0 1 3 0

now compare with what it was 12 months ago

GFK consumer confidence
How do you think the financial position of your 0 1 3 0
household will change over the next 12 months

GFK consumer confidence
How do you think the general economic situation 0 1 3 0

in this country has changed over the last 12 months

GFK consumer confidence
How do you think the general economic situation 0 1 3 0

in this country will develop over the next 12 months

GFK consumer confidence
How do you think the level of unemployment 0 1 3 0

will change over the next 12 months?

GFK consumer confidence
Do you think that there is an advantage for people 0 1 3 0

to make major purchases at the present time

GFK consumer confidence
Over the next 12 months how do you think the amount of money you’ll spend 0 1 3 0
on major purchases will compare with what you spent over the last 12 months

ONS retail sale All Retailers (Volume seasonally adjusted) 1 1 3 1
ONS retail sale All Retailers (Value seasonally adjusted) 1 1 3 1
ONS retail sale Predominantly food stores (Volume seasonally adjusted) 1 1 3 1
ONS retail sale Predominantly food stores (Value seasonally adjusted) 1 1 3 1
ONS retail sale Non-specialised stores 1 1 3 1
ONS retail sale Textiles: clothing: footwear 1 1 3 1
ONS retail sale Household goods stores 1 1 3 1
ONS retail sale Non-store retailing & repair 1 1 3 1

CBI distributive trades Retailing Sales 0 1 3 0
CBI distributive trades Retailing Orders 0 1 3 0
CBI distributive trades Retailing Sales for Time of Year 0 1 3 0
CBI distributive trades Retailing Stocks 0 1 3 0
CBI distributive trades Wholesaling Sales 0 1 3 0
CBI distributive trades Wholesaling Orders 0 1 3 0
CBI distributive trades Wholesaling Sales for Time of Year 0 1 3 0
CBI distributive trades Wholesaling Stocks 0 1 3 0
CBI distributive trades Motor Traders Sales 0 1 3 0
CBI distributive trades Motor Traders Orders 0 1 3 0
CBI distributive trades Motor Traders Sales for Time of Year 0 1 3 0
CBI distributive trades Motor Traders Stocks 0 1 3 0

ONS travel UK visits abroad: Expenditure abroad 1 1 3 2
ONS travel OS visits to UK: Earnings 1 1 3 2
ONS trade BOP: Balance, sa, Total Trade in Goods 0 1 3 2
ONS trade BOP: Balance, Manufactures 0 1 3 2
ONS trade BOP: Balance, Intermediate goods 0 1 3 2
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Release Series Logs Diff Filter Delay

ONS trade BOP: IM: CVM: sa: Total Trade in Goods 1 1 3 2
ONS trade BOP: EX: CVM: sa: Total Trade in Goods 1 1 3 2
ONS trade BOP: Balance, Capital goods 0 1 3 2
ONS trade BOP: IM, price index, Finished manufactures 1 1 3 2
ONS trade Balance of Payments: Trade in Services: Total balance: CP 0 1 3 2

FTSE All Share Dividend Yield 0 1 3 0
FTSE All Share Price / Earnings Ratio 0 1 3 0
FTSE All Share Price Index 1 1 3 0
FTSE FTSE 100 1 1 3 0

Exchange rate Japanese Yen /£ 1 1 3 0
Exchange rate United States Dollar /£ 1 1 3 0
Exchange rate Effective exchange rate index, Sterling (Jan 2005=100) 1 1 3 0
Interest rate Bank Of England Repo Rate 0 1 3 0
Interest rate Overnight £ Inter-Bank Rate (Mean Libid/Libor)–8.30am 0 1 3 0
Interest rate ICE LIBOR GBP 3 Month 0 1 3 0
Interest rate 3 Month £ Inter-Bank Rate (Mean Libid/Libor)–10.30am 0 1 3 0
Interest rate 6 Month £ Inter-Bank Rate (Mean Libid/Libor)–8.30am 0 1 3 0
Interest rate Monthly average yield from British Government Securities, 20 years 0 1 3 0
Interest rate End month level of discount rate, 3 month Treasury bills 0 1 3 0

Volatility LIFFE FTSE 100 3 Months Constant Maturity: Implied Volatility 0 1 3 0
VRP VRPSPOT(NOM,UK,5) 0 1 3 0
VRP VRPSPOT(NOM,UK,10) 0 1 3 0
VRP VRPSPOT(REL,UK,5) 0 1 3 0
VRP VRPSPOT(REL,UK,10) 0 1 3 0
VRP VRPSPOT(INF,UK,5) 0 1 3 0
VRP VRPSPOT(INF,UK,10) 0 1 3 0

ONS labor Total Claimant count 0 1 3 1
ONS labor Claimant count rate 0 1 3 1
ONS labor AEI (including bonuses), whole economy 1 1 3 2
ONS labor AEI (including bonuses), private sector 1 1 3 2
ONS labor In employment: UK: All: Aged 16+ 1 1 3 3
ONS labor Unemployed: UK: All: Aged 16+ 1 1 3 3
ONS labor Total actual weekly hours worked (millions): UK: All 1 1 3 3
ONS labor Unemployed up to 6 months: UK: All: Aged 16+ 1 1 3 3
ONS labor Unemployed over 6 and up to 12 months: UK: All: Aged 16+ 1 1 3 3
ONS labor Unemployed over 12 months: UK: All: Aged 16+ 1 1 3 3
ONS labor Unemployed over 24 months: UK: All: Aged 16+ 1 1 3 3

MST
Monthly amounts outstanding of monetary financial institutions’ 1 1 3 1

sterling M4 liabilities to private sector

MST
Monthly average amount outstanding of total sterling notes 1 1 3 1

and coin in circulation out-side the Bank of England
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Release Series Logs Diff Filter Delay

MST VQWK.M 1 1 3 1
MST Money Stock: Retail Deposits and Cash in M4: NSA 1 1 3 1

MST Monthly amounts outstanding of monetary financial institutions’ 1 1 3 1
sterling net lending to private sector

MST Monthly value of total sterling approvals for secured lending to individuals 1 1 3 1
CIPS manufacturing Consumer Goods Industries - Total New Orders 1 1 3 1
CIPS manufacturing Supplier’s Delivery Times 1 1 3 1
CIPS manufacturing Employment 1 1 3 1
CIPS manufacturing Stocks Of Finished Goods 1 1 3 1
CIPS manufacturing Investment Goods Industries 1 1 3 1
CIPS manufacturing Total New Orders 1 1 3 1
CIPS manufacturing Output 1 1 3 1
CIPS manufacturing Quantity Of Purchases 1 1 3 1
CIPS manufacturing Stocks Of Purchases 1 1 3 1
CIPS manufacturing Input Prices 1 1 3 1

ONS output Industry C,D,E: All production industries 1 1 3 2
ONS output Industry C: Mining & quarrying 1 1 3 2
ONS output Industry D: Manufacturing 1 1 3 2
ONS output Industry E: Electricity, gas and water supply 1 1 3 2
ONS output Industry DA: Manuf of food, drink & tobacco 1 1 3 2
ONS output Industry DB: Manuf of textile & textile products 1 1 3 2
ONS output Industry DC: Manuf of leather & leather products 1 1 3 2
ONS output Industry DD: Manuf of wood & wood products 1 1 3 2
ONS output Industry DE: Pulp/paper/printing/publishing industries 1 1 3 2
ONS output Industry DF: Manuf coke/petroleum prod/nuclear fuels 1 1 3 2
ONS output Industry DG: Manuf of chemicals & man-made fibres 1 1 3 2
ONS output Industry DH: Manuf of rubber & plastic products 1 1 3 2
ONS output Industry DI: Manuf of non-metallic mineral products 1 1 3 2
ONS output Industry DJ: Manuf of basic metals & fabricated prod 1 1 3 2
ONS output Industry DK: Manuf of machinery & equipment 1 1 3 2
ONS output Industry DL: Manuf of electrical & optical equipment 1 1 3 2
ONS output Industry DM: Manuf of transport equipment 1 1 3 2

CBI monthly trends
Do you consider that in vo-lume terms, 0 1 3 0

your present total order book is above normal?

CBI monthly trends
Do you consider that in volume terms, 0 1 3 0

your present export order book is above normal?
CBI monthly trends Adequacy of Stocks of Finished Goods 0 1 3 0

CBI monthly trends
What is the expected trend over the next 4 months 0 1 3 0

with regards to your volume of output?

CBI monthly trends
What is the expected trend over the next 4 months 0 1 3 0
with regards to average prices for domestic orders?

Experian Construction United Kingdom: Experian Construction Activity (Index) 1 1 3 1
Brent crude 1 Month Fwd, fob U$/BBL 1 1 3 0
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Release Series Logs Diff Filter Delay

Brent crude Physical Del., fob U$/BBL 1 1 3 0
ONS PPI NSI: All manufacturing: Materials only 1 2 3 1
ONS PPI Prod of man ind excl.f,b, p & t sa 1 2 3 1
ONS PPI Fuels Purchased by Man Ind Excl CCL 1 2 3 1
ONS PPI NSI: M & F purchased by Man: Excl FBPT Excl CCL NSA 1 2 3 1
ONS PPI Output of manufactured products 1 2 3 1
ONS PPI NSO: All Manufacturing excl duty: sa 1 2 3 1
ONS CPI Food And Non-Alcoholic Beverages 1 2 12 1
ONS CPI Alcoholic Beverages, Tobacco & Narcotics 1 2 12 1
ONS CPI Clothing And Footwear 1 2 12 1
ONS CPI Housing, Water And Fuels 1 2 12 1
ONS CPI Furn, Hh Equip & Routine Repair Of House 1 2 12 1
ONS CPI Health 1 2 12 1
ONS CPI Transport 1 2 12 1
ONS CPI Communication 1 2 12 1
ONS CPI Recreation & Culture 1 2 12 1
ONS CPI Education 1 2 12 1
ONS CPI Hotels, Cafes And Restaurants 1 2 12 1
ONS CPI Miscellaneous Goods And Services 1 2 12 1

HBF Change in net house prices during the month 0 1 3 2
HBF Site Visits, compared with a year ago 0 1 3 2
HBF Net Reservations, compared with a year ago 0 1 3 2
HAC RICS Housing Market Survey, Prices, England and Wales, Net Balance 0 1 3 1
HAC Ratio Of RICS Sales Series To RICS Stock Series 0 1 3 1
US VIX 0 1 3 0
US TED 0 1 3 0
US Manufacturing PMI 1 1 3 1
US IP manufacturing 1 1 3 1
US EXPORTS F.A.S. CURA 1 1 3 2
US IMPORTS F.A.S. CURA 1 1 3 2
US Retail sales (current prices) 1 1 3 1
US S&P/CASE-SHILLER HOME PRICE INDEX - 10-CITY COMPOSITE SADJ 1 2 3 2
US Employment 1 1 3 1
US Unemployment rate 0 1 3 1
US M2 1 1 3 1
US S&P monthly average 0 1 3 0

Germany Assessment of business 1 1 3 0
Germany bussiness expectation 1 1 3 0
Germany consumer confidence 0 1 3 0
Germany Export 1 1 3 2
Germany Import 1 1 3 2
Germany IP manufacturing 1 1 3 1
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