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Abstract

The maximum likelihood estimation of random effects dynamic probit models hinges

on strong distributional assumptions. This paper offers simple diagnostic tests to detect

possible specification errors for this class of models. We developed two moment-based test

statistics by focusing on the marginal, period-by-period conditional mean function of binary

outcomes. These statistics follow chi-square distributions asymptotically and are robust to

within-individual dependences of panel data. Our Monte Carlo study revealed that they

work well in a finite sample. Finally we applied the new testing procedure to an empirical

analysis drawn from an existing paper.
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1 Introduction

The identification of structural state dependence in the presence of unobserved heterogeneity

has been a long-held issue in panel data analysis. Heckman (1981) advocates the random ef-

fects (RE) dynamic probit dedicated to this issue. More recently, Wooldridge (2005) shows

how to conduct the maximum likelihood (ML) estimation of this class of models by commercial

softwares without special programmings. Arulampalam and Stewart (2009), Akay (2012) and

Rabe-Hesketh and Skrondal (2013) each demonstrate by the Monte Carlo studies that the Heck-

man and the Wooldridge ML estimators work equally well if the time period of panel is not too

short.

As shown by Yatchew and Griliches (1985), the ML estimator for probit-type models is

inconsistent if the models have non-spherical errors in latent variable regressions. Therefore,

some authors regard as a limitation the distributional assumptions imposed by the RE approach.

To leave the distribution of unobserved effects unspecified, Honoré and Kyriazidou (2000) offers

a fixed effects dynamic logit. Alternatively, Christelis and Sanz-de Galdeano (2011) and Deza

(2015), among others, adopt nonparametric, discrete mixture distributions to individual effects

à la Heckman and Singer (1984). It is possible to run a version of heteroskedastic probit so that

the second moment of individual effects depends on the regressors (Greene, 2011, pp.754).

Because the ML estimations of these generalized models are intractable, simple diagnostic

tests are needed to detect specification errors without estimating them.*1 Despite their useful-

ness, such tests have not drawn sufficient attentions in the literature. The aim of this paper is

to propose convenient specification tests for the RE dyamic probit. Specifically, we put em-

phases on the cases where the unobserved effects are (i) wrongly dependent on the regressors,

(ii) heteroskedastc, and (iii) non-normally distributed.

One may argue that Lagrange multiplier (LM) or score tests are natural options in the current

problem because the RE dynamic probit is estimated by the ML based on the joint distribution

of outcomes. However, the score function of the RE probit ML is in general formidably com-

plicated (Greene and McKenzie, 2015). Given this difficulty, this paper employs the conditional

moment (CM) tests addressed by Newey (1985), Tauchen (1985), and Pagan and Vella (1989),

among others. It should be underscored that here we are interested in the conditional moment

misspecification of a marginal outcome. Hence, although the correct specification of joint dis-

tribution is needed by the ML estimation, it is redundant at the stage of testing.

This paper offers two moment-based tests robust to within-individual correlations of arbi-

trary form, thereby taking the panel data structure into account. Importantly, one of these two

*1Along with the programing burden, Wooldridge (2005) points out the features of the fixed effects approach
discouraging its application to empirical studies.
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tests are performed by a regression package with a cluster-robust covariance matrix option.

We not only derived the limiting distributions of them but also examined their small sample

performances through Monte Carlo simulations. Finally our procedure was applied to test the

specification of union membership dynamics model in Wooldridge (2005). We found that the

non-normality of unobserved heterogeneity was not rejected in this model.

As related studies, Davidson and MacKinnon (1984) and Skeels and Vella (1999) highlight

artificial regressions to conduct the LM/CM tests for the cross-sectional probit under the random

sampling assumptions. Unlike these studies, we analyze panel data and so cannot take over their

methodologies directly. Lechner (1995) and Bertschek and Lechner (1998) consider a robust

statistical inference of static panel probit models from the standing points of quasi maximum

likelihood (QML) and M-estimation. We should avoid these frameworks here because the ML

estimation of RE dynamic probit needs correctly specified joint outcome distribution. Hyslop

(1999) and Keane and Sauer (2010) concern the misspecified joint distribution of outcomes as a

source of inconsistent estimation for the key structural parameters. In contrast to them, we pay

special attentions to the specification errors at marginal distribution.

The remainder of this paper is organized as follows. Section 2 specifies the model and

moment conditions to test and derives limiting distributions of the tests. Section 3 is devoted

to Monte Carlo simulation verifying small sample performance of the tests and to an empirical

application. Section 4 concludes the paper.

2 Specification Test for RE Dynamic Probit Model

2.1 Model specification and ML estimation

This subsection reviews a stylized model of RE dynamic probit and its ML estimation. Let yit
and xit be a binary outcome and regressors for individual i (i = 1,2, . . . ,N) in period t (t =

0,1, . . . ,T) and stack them to vectors yi = (yi1, . . . , yiT )′ and xi = (x′
i1, . . . ,x

′
iT )′. The (T + 1)

periods observations, (yi0,yi ,x
′
i0,x

′
i )
′, are assumed to be independent over the N individuals.*2

We consider the case of short panel where N → ∞ with T being constant.

The dynamics of binary yit is modeled as latent variable regression

y∗it = δyi, t−1 + x
′
itβ + a∗

i + uit , yit = 1
[
y∗it > 0

]
, (1)

where 1 [A] is an indicator function taking on unity if A is true and zero otherwise and (δ,β′)′

are unknown parameters to be estimated. Last two terms a∗
i and uit denote unobserved, time-

*2Regressor’s initial value xi0 is supposed to be sampled along with yi0 but discarded in this paper as well as in
many empirical studies. Rabe-Hesketh and Skrondal (2013) shed some light on the role of xi0 in the dynamic probit.
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invariant characteristics of individual i (e.g., differentials in innate productivity or preference)

and time-varying stochastic disturbances hitting i, respectively. Note that, because our observa-

tion starts at t = 0, no lagged dependent variable is available for yi0’s regression and that yi0
may be correlated with a∗

i as well as outcome sequence yi . The endogeneity of yi, t−1 in equa-

tion (1) arising from the possible correlation between yi0 and a∗
i is called the “initial condition

problem” in the literature. The econometric approach originally proposed by Heckman (1981)

is constructing a joint model of (yi0,yi ) given (xi ,a∗
i ).

Extending the correlated random effects (CRE) assumption of Chamberlain (1984, Chap-

ter 3), Wooldridge (2005) proposes a much simpler solution than that in Heckman (1981) to

circumvent the initial condition problem. Following Wooldridge, we formulate the parametric

relationships among (yi0,xi ,a∗
i ) as

a∗
i = δ0yi0 + x

′
i1π1 + x

′
i2π2 + · · · + x′

iTπT + σaai , σa > 0. (2)

Here last term ai is a regression error of a∗
i given (yi0,x′

i )
′ and so independent from them by

definition. Coefficient σa is an unknown scale parameter. Inserting equation (2) to structural

form (1), we have reduced form

y∗it = δyi, t−1 + x
′
itβ + δ0yi0 + x

′
i1π1 + x

′
i2π2 + · · · + x′

iTπT + σaai + uit . (3)

Hence the heart of Chamberlain-Wooldridge CRE device boils down to include the initial out-

come and regressors of every period into the set of controls as time-invariant regressors.*3

For later use, we adopt reparameterization

π1 =
1
T
π, πs =

1
T
π + λs , s = 2,3, . . . ,T, (4)

to turn equation (3) into

y∗it = δyi, t−1 + x
′
itβ + δ0yi0 + x̄

′
iπ + x

′
i2λ2 + · · · + x′

iTλT + σaai + uit

= z′
itθ +w

′
iγ + σaai + uit , (5)

where zit = (yi, t−1,x
′
it , yi0, x̄

′
i )
′, wi = (x′

i2,x
′
i3, . . . ,x

′
iT )′, and θ and γ collect the corre-

sponding sets of coefficients. Assuming identical independent normality of (ai ,ui0,ui1, . . . ,uiT )

*3Obviously, in the CRE approach, the structural coefficients of time-invariant regressors (e.g., race, sex, and
education level) are not identified. This identification condition is similar to that in the within estimator of fixed
effects linear regressions.
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given (zit ,wi ), we have the joint probability mass function of yi given (zit ,wi ) and ai ,

f (yi |zit ,wi ,ai ) =
T∏
t=1

Φ
[
(2yit − 1)(z′

itθ +w
′
iγ + σaai )

]
, (6)

which is a product of Bernelle distributions possessing time-homogeneous probabilities of oc-

currence. Here Φ(·) is the standard normal cumulative distribution function. Let φ(a) be the

normal density. Postulating the normality assumption on ai , we close the log-likelihood func-

tion for individual i;

log Li (θ,γ,σ
2
a ) = log

⎧⎪⎨⎪⎩
∫ ∞

a=−∞

T∏
t=1

Φ
[
(2yit − 1)(z′

itθ +w
′
iγ + σaa)

]
φ(a)da

⎫⎪⎬⎪⎭
. (7)

By maximizing
∑N

i=1 log Li (θ,γ,σ2
a ) with respect to the parameters, we have the ML estimator

of them. In running the ML estimation, statistical softwares apply Gaussian quadratures or

Monte Carlo integration to evaluate the above expectation. (For example, “xtprobt” of Stata

version 13.1 employs adoptive quadratures.)

2.2 Moment conditions to test

In the empirical applications of RE dynamic probit models, researchers often add within individ-

ual mean x̄i =
1
T

∑T
t=1 xit to the expanded set of control variables instead of high-dimensional

xi = (x′
i1,x

′
i2, . . . ,x

′
iT )′. See, for example, Akay (2012) and Rabe-Hesketh and Skrondal

(2013) for this treatment. It is obvious from equation (5) that this common practice is equivalent

to impose restriction γ = 0 on the general model. Let us consider first the hypothesis testing for

exclusion restriction

H0 : γ = 0, H1 : γ � 0 (8)

or equivalently the significance of omitted variables wi = (x′
i2,x

′
i3, . . . ,x

′
iT )′. We will gener-

alize this problem later. In the case where the dimension of time-varying variables xit is high,

Wooldridge (2005) procedure can blow up the number of nuisance parameters in γ. So we may

want to avoid estimating the model under the alternative hypothesis.

Because the estimation is conducted based on the full-likelihood given in equation (7), it

seems natural to pursuit LM or score tests for testing the hypothesis. However, the score func-

tion of the current model, ∇γ log Li (θ,γ,σ2
a ), does not have a tractable form. See Greene and

McKenzie (2015) for the case of RE static probit. For this reason, this paper offers alternative,

convenient ways to test the specifications of the RE dynamic probit. The point is that, although

5



the joint modeling of outcomes yi is unavoidable for archiving the consistent estimation of key

parameters, marginal distributions suffice to test for the misspecification concreting marginal

means. By focusing on the margin, we can apply the conditional moments (CM) tests argued by

Newey (1985), Tauchen (1985), and Pagan and Vella (1989) to the current problem.

The moment condition implied by the null hypothesis of equation (8), which plays the key

role in the CM tests, is derived as follows. Wooldridge (2005) shows that the conditional expec-

tation of yit on (zit ,wi ,ai ) is expressed as

pit = E(yit |zit ,wi ,ai ) = Φ
[
μit (θ,γ,σ

2
a )
]
, μit (θ,γ,σ

2
a ) =

z′
itθ +w

′
iγ√

1 + σ2
a

. (9)

Accordingly, the error form of binary yit is written as

yit = pit + eit , E(eit |zit ,wi ,ai ) = 0, Var(eit |zit ,wi ,ai ) = pit (1 − pit ). (10)

Define Φ0, it = Φ
[
μit (θ,0,σ2

a )
]

and φ0, it = φ
[
μit (θ,0,σ2

a )
]
, the former of which corresponds

to the conditional mean of yit when the null hypothesis is true. It follows from the first order

Taylor expansion of pit around γ = 0 that

yit = Φ0, it + φ0, itw
′
iξ + eit , ξ =

γ√
1 + σ2

a

. (11)

So we have moment condition E
(∑T

t=1 φ0, itwiteit
)
= E

[∑T
t=1 φ0, itwit (1 − Φ0, it )

]
= 0 under

the null hypothesis. Since eit is heteroskedastic, a more efficient one should be given by

E
⎡⎢⎢⎢⎢⎣

T∑
t=1

φ0, itwi (yit − Φ0, it )
Φ0, it (1 − Φ0, it )

⎤⎥⎥⎥⎥⎦
= E

⎛
⎜⎝

T∑
t=1

ritwi

⎞
⎟⎠ = 0, rit =

φ0, it (yit − Φ0, it )
Φ0, it (1 − Φ0, it )

, (12)

i.e., orthogonality of regressor wi and generalized residual rit . Let the ML parameter estimates

under the null hypothesis be (θ̂, σ̂2
a ) and the estimate of rit based on them be r̂it . We thus obtain

the sample version of the above moment,
∑N

i=1
∑T

t=1 r̂itwi/N .

It is worthwhile mentioning that moment condition (12) is equivalent to the efficient score

of the LM tests coming out from quasi-log-likelihood

log Qi (θ,γ,σ
2
a ) =

T∑
t=1

logΦ
[
(2yit − 1)μit (θ,γ,σ

2
a )
]
. (13)

However, as mentioned before, the maximization of
∑N

i=1 log Qi (θ,γ,σ2
a ) does not yield con-

sistent parameter estimates due to the endogeneity brought by lagged dependent variable yi, t−1.
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Next we proceed to test the heteroskedastiticy and non-normality of unobserved heterogene-

ity ai . For the alternative hypothesis of heteroskedastiticy, we specify ai’s scale coefficient as

σ2
ai = σ

2
a exp(2x′

iγ) that has baseline parameter σ2
a . In testing non-normality, we place an arbi-

trary non-normal distribution for the alternative hypothesis. The specific form of the density will

be given in the Monte Carlo simulations in Section 3. To deal with all the alternative hypotheses

coherently, let us define functions

Omitted variables : μit (θ,γ,σ
2
a ) =

z′
itθ +w

′
iγ√

1 + σ2
a

, (14)

Heteroskedasticity : μit (θ,γ,σ
2
a ) =

z′
itθ√

1 + σ2
a exp(2x′

iγ)
, (15)

Non-normality : μit (θ,γ,σ
2
a ) =

z′
itθ + γ1(z′

itθ)2 + γ2(z′
itθ)3

√
1 + σ2

a

. (16)

Here the first one is the reproduction of equation (12). Invoking Ruud (1984), the last specifica-

tion has a power against the general non-normality of error component ai + uit Being restricted

to γ = 0, all the three functions are reduced to

Null model : μit (θ,0,σ
2
a ) =

z′
itθ√

1 + σ2
a

. (17)

The above is obtained by the ML estimation without estimating γ.

Let the linear approximation of the outcome around the null hypothesis be

yit = Φ0, it + φ0, itẘ
′
itξ + eit , ẘit = ∇γ μit (θ,0,σ2

a ), (18)

where the vector of ancillary regressors ẘit varies depending on which of the alternative models

is considered. Specifically, it follows that

Omitted variables : ẘit = wi = (x′
i2,x

′
i3, . . . ,x

′
iT )′, (19)

Heteroskedasticity : ẘit = −1
2

(1 + σ2
a )−

3
2σ2

axi (z
′
itθ) ∝ xi (z

′
itθ), (20)

Non-normality : ẘit =
[
(z′

itθ)2, (z′
itθ)3

] ′
. (21)

Consequently the moment conditions to hold when the null hypothesis is true is given by

E

⎛
⎜⎝

T∑
t=1

φ0, itẘit (yit − Φ0, it )
Φ0, it (1 − Φ0, it )

⎞
⎟⎠ = E

⎛
⎜⎝

T∑
t=1

ritẘit

⎞
⎟⎠ = 0, rit =

φ0, it (yit − Φ0, it )
Φ0, it (1 − Φ0, it )

. (22)
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The corresponding sample moment is thus

1
N

N∑
i=1

T∑
t=1

r̂it ˆ̊wit , (23)

computable with estimated regressors ˆ̊wit in hand. We may judge the deviation of null hypoth-

esis from the actual data generating process through witnessing statistic (23).

2.3 Construction of robust CM test statistics

In contrast to the situations analyzed by the vast majority of existing studies (e.g., Skeels and

Vella, 1999), the observations in this paper have within-individual or cluster correlation because

of the panel structure. When the data is dependent it is difficult to use the auxiliary regression

technique due to the generalized information equality by Newey (1985) and Tauchen (1985) to

obtain the desired test statistics. So this subsection derives the limiting distribution regarding

the sample moment given in equation (23).

Proposition 1 Define J dimensional vectors

si =
T∑
t=1

ritẘit , ŝi =
T∑
t=1

r̂it ˆ̊wit . (24)

Suppose that

1. observation (yi0,yi ,x
′
i )
′, i = 1,2, . . . ,N are mutually independent,

2. T is fixed to be finite constant while N → ∞, and

3. si is full-rank and has finite, positive definite covariance matrix

Ω = E
(
sis

′
i

)
=

T∑
t=1

T∑
s=1

E
(
ritrisẘitẘ

′
it

)
. (25)

Then it follows that, under the null hypothesis,

1√
N

N∑
i=1

ŝi
d→ N(0,Ω) (26)

and so
(∑N

i=1 ŝi
)′
Ω−1

(∑N
i=1 ŝi

)
/N a∼ Chi(J).
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Proof. (i) Since the ML estimator is
√

N-consistent, we have
∑N

i=1(ŝi − si )/
√

N
p→ 0.

(ii) If the null hypothesis is true, then E(si ) = 0 and Var(si ) = Ω by assumption (25). So

it follows that
∑N

i=1 si/
√

N
d→ N(0,Ω) due to the Central Limit Theorem. (iii) By applying

Theorem (x)-(d) of Rao (1973, pp. 123-124) to results (i) and (ii), we have equation (26). �

Replacing J-dimensional covariance matrix Ω in Proposition 1 with its nonparametric esti-

mator
∑N

i=1 ŝi ŝ
′
i/N , we define robust CM statistic

χ2
CM =

⎛
⎜⎝

N∑
i=1

T∑
t=1

r̂it ˆ̊wit

⎞
⎟⎠
′ ⎛
⎜⎝

N∑
i=1

T∑
t=1

T∑
s=1

r̂it r̂is ˆ̊wit
ˆ̊w′
is

⎞
⎟⎠
−1 ⎛

⎜⎝
N∑
i=1

T∑
t=1

r̂it ˆ̊wit

⎞
⎟⎠ . (27)

Statistic χ2
CM follows chi-square distribution with degree of freedom J under the null hypothesis

of ξ = 0.

2.4 Least squares tests

In order to obtain the robust CM statistic given in equation (27), we need to make some program-

ming efforts after the ML estimation of the null model. This post-estimation step may cast an

obstacle to use it. So we offer another tractable testing procedure robust to the within-individual

correlations.

Rewrite the weighted version of equation (18) as

yit − Φ0, it√
(1 − Φ0, it )Φ0, it

=
φ0, itẘ

′
itξ√

(1 − Φ0, it )Φ0, it
+

eit√
(1 − Φ0, it )Φ0, it

⇔ ỹit = w̃′
itξ + ẽit .

(28)

Let

ξ̂ =

⎛
⎜⎝

N∑
i=1

T∑
t=1

w̃itw̃
′
it

⎞
⎟⎠
−1 N∑

i=1

T∑
t=1

w̃it ỹit (29)

be the least squares estimator of ξ in equation (18). Then its limiting distribution is given by

√
N ξ̂

d→ N (0,V ) , V =HΩ−1H , (30)

here H = E
(∑T

t=1 w̃itw̃
′
it

)
and

Ω =

T∑
t=1

T∑
s=1

E
(
ritrisẘitẘ

′
it

)
=

T∑
t=1

T∑
s=1

E
(
ẽit ẽisw̃itw̃

′
is

)
. (31)

9



Thus quadratic form

χ2
LS = ξ̂′

⎡⎢⎢⎢⎢⎢⎣

⎛
⎜⎝

N∑
i=1

T∑
t=1

w̃itw̃
′
it

⎞
⎟⎠
′ ⎛
⎜⎝

N∑
i=1

T∑
t=1

T∑
s=1

ẽit ẽisw̃itw̃
′
is

⎞
⎟⎠
−1 ⎛

⎜⎝
N∑
i=1

T∑
t=1

w̃itw̃
′
it

⎞
⎟⎠
⎤⎥⎥⎥⎥⎥⎦

−1

ξ̂ (32)

obeys the chi-square distribution with degree of freedom J asymptotically.

The form of χ2
LS in equation (32) appears to be more complicated than that of χ2

CM in

equation (27). Actually, however, computing χ2
LS is straightforward if a statistical software with

cluster-robust covariance matrix routine is available. The procedure is as follows.

1. Estimate θ and σ2
a under the null via dynamic probit ML in equation (7). (This step is

identical to that in obtaining χ2
CM.)

2. Construct regression error ỹit and ancillary regressor w̃it from the ML estimator θ̂ and

σ̂2
a .

3. Regress ỹit on w̃it (and no constant term) with “cluster” option.

4. See the F or chi-square statistics of joint significance test on ξ, which is what we want.

The F or chi-square statistics at the above fourth step are often automatically generated as a

goodness of fit measure after running a regression package. If w̃it is scaler, the use of the

cluster-robust t statistic of significance test is advised.

Two new statistics χ2
CM and χ2

LS share common limiting chi-square distribution Chi(J) but

the latter has the advantage of simplicity. An additional attraction of the LS approach is that, as

demonstrated in the empirical analysis of Section 3, it is easy to check which variable contributes

to a given misspecification separately. However, their performance under the realistic numbers

of observations are unclear. So the next section will be devoted to compare their finite sample

performances through Monte Carlo simulations.

3 Monte Carlo Study and Empirical Application

3.1 Design of simulation

This subsection describes the details on the simulation design. The number of individuals and

time periods examined were N = {500,1000} and T + 1 = {4,8}. In generating individual

time series we gave zero to the initial value, run the process specified below, and discarded

first 50 periods to eliminate the influence of the arbitrary chosen initial value. We replicated

the estimation and computation of statistics 1000 times. The simulation was conducted by Ox

console version 7.00 (Doornik, 2007).
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The data generating process under the null hypothesis was built as follows. For a given

individual, we drew a sequence of univariate time-varying regressors from normal autoregressive

process

xit = 0.5xi, t−1 +
√

1 − 0.5x∗it , x∗it ∼ N(0,1), (33)

so that E(xit ) = 0 and Var(xit ) = 0.*4 The unobserved heterogeneity was assumed to have

uniform correlations with period-by-period regressors and to distribute as standard normal;

a∗ = γ
T∑
s=1

xis + σaai , ai ∼ N(0,1). (34)

Outcome yit was then generated from

y∗it = ρyi, t−1 + β0 + β1xit + a∗
i + uit

= ρyi, t−1 + β0 + β1xit + γ
T∑
s=1

xis + σaai + uit , yit = 1[y∗it > 0], (DGP0)

where uit ∼ N(0,1) represent independent standard normal disturbances. The parameter values

were fixed such that

(δ, β0, β1, γ,σa ) = (0.5,1.0,1.0,0.5,1.0). (35)

Hereafter we call the setting we made so far DGP0.

As alternative hypothesis, we considered the misspecification regarding unobserved hetero-

geneity a∗
it in equation (2); omitted variables (equivalent to time variation of γ), heteroskedas-

tictity, and non-normality. For the case of omitted variables, we replace γ
∑T

s=1 xis (γ = 0.5) of

in DGP0 to

⎧⎪⎪⎨⎪⎪⎩
gi4 = (−2.0xi1 − 0.5xi2 + 2.0xi3)/4 for T + 1 = 4,

gi8 = (−2.0xi1 − 0.5xi2 + 2.0xi3 + 2.0xi4 − 0.5xi5 − 2.0xi6 − 2.0xi7)/8 for T + 1 = 8.

(DGP1)

*4We replaced the normal with the uniform distribution and obtained similar conclusions on the Monte Carlo study.
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In generating y∗it with heteroskedastic a∗
it , parameter σa in DGP0 is substituted with

⎧⎪⎪⎨⎪⎪⎩
exp (gi4) for T + 1 = 4,

exp (gi8) for T + 1 = 8.
(DGP2)

so that not only the mean but also variance of a∗
i is dependent upon the history of regressors.

To generate non-normal individual heterogeneity, we replace ai ∼ N(0,1) with finite mixture of

normals

ai = 1[κi ≤ 0.7]bi + 1[κi > 0.7]ci , bi ∼ N

(
−2,

1
9

)
ci ∼ N

(
2,

1
9

)
, (DGP3)

where κi ∼ U(0,1). Note that κi also brings heteroskedasticity into ai , interpreted as latent class

assignments of individual heterogeneity. Consequently, DGP3 should be detected by testing

heteroskedasticity.

Each repetition in the simulation starts with the ML estimation of the null model. We esti-

mated the simplified version of Wooldridge (2005) model,

y∗it = δyi, t−1 + β0 + β1xit + δ0yi0 + (γT ) x̄i + σaai + uit , t = 1,2, . . . ,T, (36)

using the panel of (xit , yit ) generated by the aforementioned process. The log-likelihood func-

tion derived from the above model was evaluated by 20 points Gauss-Hermite quadrature. Un-

der the null hypothesis, i.e., DGP0, this estimator is supposed to be consistent to the unknown

parameter. The following points should be remarked here. First, constant term β0 and scale

parameter σ2
a are not identified in the reduced form expression above. Second, the value of

coefficient δ0 is unknown a priori.

For constructing test statistics χ2
CM and χ2

LS for detecting specification errors given in DGP1,

GDP2, and DGP3, we exploited the following moment conditions called TEST1, TEST2, and

TEST3, respectively. (J denotes the degree of freedom.)

T∑
t=1

E
[
(xi2, xi3 . . . , xiT )′ rit

]
= 0, J = 2,6, (TEST1)

T∑
t=1

E
[
(xi1, xi2 . . . , xiT )′ μitrit

]
= 0, J = 3,7, (TEST2)

T∑
t=1

E
[(
μ2
it , μ

3
it

)′
rit

]
= 0, J = 2. (TEST3)

Note that the degrees of freedom of TEST1 and TEST2 depend on the length of time period T+1
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whereas fixed to two for TEST3. To verify that the asymptotic approximation works properly,

we further considered a set of placebo moment conditions;

T∑
t=1

E
[(

m1, it ,m2, it
)′ rit

]
= 0, J = 2, (PLACEBO1)

T∑
t=1

E
[(

m1, it ,m2, it
)′ μitrit ] = 0, J = 2. (PLACEBO2)

In the above conditions, m1, it ∼ N(0,1) and m2, it ∼ N(0,1) represents pure white noises not

appeared in the models. So the corresponding CM/LS tests should not have powers against

GDP1, DGP2, nor DGP3 and serve as benchmarks. Consequently there are five test statistics

given the data set.

Table 1 summarizes the 20 combinations of test statistics and actual data generating process.

If the data follow DGP0 (i.e., the null model), the rejection frequencies of all the tests in simula-

tion correspond to their empirical sizes. Likewise, under DGP1, DGP2, and DGP3, the rejection

frequencies of TEST1, TEST2, and TEST3 mean their powers respectively. Word “possible” in

the table implies that the test may have power on a given misspecification although it is not a

legitimate test. For example, TEST2 is intended to detecting heteroskedastictiy (DGP2) but may

have power on the omitted variables (DGP1).

3.2 Monte Carlo Results

Before moving on to the results on the testing hypothesis, we shall take a brief look at the

estimated bias of RE dynamic probit due to specification errors. Table 2 shows the Monte

Carol mean, mean bias (in percent), and root mean squared error (RMSE) for each of tests

with N = 500. As mentioned in the previous subsection, constant β0 and variance σ2
a are not

identified in the framework of Wooldridge (2005) and so the bias on them are not defined. It

is obvious from the table that misspecification concerning individual effect ai can cause non-

negligible bias on lagged outcome’s and regressor’s coefficients δ and β1 when time period is

short (T + 1 = 4). However, the bias got diminished as time period being extended. When

T + 1 = 8, the bias was virtually zero for all DGPs. Importantly, unidentified parameters β0

and σ2
a played a role of absorbing the influences of misspecification on the estimates of key

parameters δ and β1. We can see similar tendencies in the results of larger sample size N = 1000

in Table 3.

Table 4 through Table 7 present the mean of statistics and rejection frequencies at 10 and 5

percent nominal sizes for four patterns of data generations. (Theoretically, the mean should be

close to the degree of freedom when DGP0, the null hypothesis, is true.) Each table compares

13



the test performances of χ2
CM and χ2

LS. Overall, these two tests generated similar results but χ2
LS

had slightly higher mean and rejection frequency than χ2
CM did.

Table 4 displays the simulation results when the data came from DGP0, the null hypothesis.

Therefore all the rejection frequencies appeared in the table measure the sizes of tests. In shorter

time period T + 1 = 4, TEST1 (designed for detecting DGP1) and TEST2 (for DGP2) tended

to under-reject the null hypothesis. In contrast, when the time period is T + 1 = 8, TEST1 and

TEST2 had empirical sizes close to the nominal ones but TEST3 (for DGP3) under-rejects the

null. For all cases of N and T + 1, PLACEBO1 and PLACEB02 exhibited nearly correct sizes.

The results when the data generation process is DGP1 (omitted variables) or DGP2 (het-

eroskedasticity) are given in 5 and Table 6, respectively. For DGP1, TEST1 and TEST2 had

great powers for detecting omitted variables (see Table 5). On the other hand, the test for het-

eroskedasticity, TEST2, poorly worked for its purpose in Table 6. An increase in N seem to

improve its power to some extent. TEST3 responded to omitted variables (heteroskedasticity)

moderately when time period was longer (shorter).

Finally, according to Table 7 designated for DGP3, TEST3 has powers against non-normality

at satisfactory levels. Particularly with N = 1000, it correctly maintained the alternative hypoth-

esis. However, the power was declining as T being extended. TEST1 and TEST2 may have the

weak senses of fining non-normality depending upon N and/or T .

3.3 Application: Specification tests for union membership dynamics

In this subsection we test the misspecification of the model for the union membership dynamics

estimated by Wooldridge (2005). The data were originally analyzed by Vella and Verbeek (1998)

and available in Journal of Econometrics Data Archive.*5 We performed the ML estimation of

RE dynamic probit model regressing the dummy of the union membership on the previous year’s

membership, marital status, and individual characteristics. In this regression the time-varying

regressors is only marital status and time dummies. For simplicity, we used the convenient LS

approach to obtain the test statistics. All of the outputs shown up in this subsection was generated

by Stata version 13.1. (Stata code is available upon request.)

Table 8 shows two sets of estimates. The first one, labeled with Model 1, imposes the

exclusion restriction on the set of marital status variables (appeared in the model as controls)

discussed in section 2. The second one, Model 2, represents the model under the alternative

hypothesis, a variant of Wooldridge (2005) under the different parameterizations on the marital

variables. The minor difference in the results of Wooldridge (2005) and of the current paper may

stem from the difference in parameterizations and/or the quadrature techniques employed in the

*5The ULR is; http://qed.econ.queensu.ca/jae/
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ML estimation. The conventional Wald statistic testing for the joint significance of “Married

1982” through “Married 1987” is 6.93 with degree of freedom six in the table, not rejecting the

restriction.*6

We tested the same hypothesis as in Table 8 again using χ2
LS and gave the results in the top

panel of Table 9. The value of the test statistic (8.82) was slightly different from that of the

conventional Wald in Table 8 but we drew the same conclusion from it. In terms of the first

moment modeling of individual effects in equation (2), general coefficients of marital control

variables may be redundant.

The middle panel of Table 9 shows the test statistics for heteroskedasticity. In the table

we see that Model 1, which is a more parsimonious and widely employed specification in the

literature, failed to reject the presence of heteroskedasticity on individual effects. In contrast,

in Model 2 (with no restrictions on the marital control variables), heteroskedasticity was not

statistically significant. In light of this finding, it may be advisable that, for the purpose of

circumventing heteroskedasticity, one should leave the correlation patterns of unobserved effects

and time-varying regressors unrestricted.

Finally, the bottom panel of Table 9 is on testing non-normality of individual effects. Ac-

cording to the statistics given in the table, the normality assumption is not supported in neither

Model 1 nor Model 2. Even if we allowed the model to have free correlations between mari-

tal control variables and individual effects, the computed χ2
LS statistic is well above its critical

value. Therefore flexible distributions used in Christelis and Sanz-de Galdeano (2011) and Deza

(2015) might be more appropriate to this data than the normal distribution.

4 Concluding Remark

This paper proposed two moment-based tests for detecting possible specification errors in the

unobserved heterogeneity for the RE dynamic probit models. The proposed tests are computa-

tionally simple and robust to the presence of within-individual correlations in observations. We

demonstrated the performances of these tests via Monte Carlo simulations and real application

to the data analyzed by Vella and Verbeek (1998) and Wooldridge (2005).

Throughout this study our chief concern has been on the RE dynamic probit. However, the

situation considered here encompasses general cases where the principal model consists of the

joint distribution but a researcher is concerned with specification errors in the marginal distri-

bution of an outcome. The test statistics presented here are readily applicable to, for example,

*6In the RE estimation of dynamic probit, the dependence of observations is handled by parametric joint modeling
of the outcomes. So the z and Wald statistics appeared in Table 8 are computed based on the information matrix
equality of the ML estimation.
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autoregressive dynamic probit models (Hyslop, 1999).

The Monte Carlo session of this paper examined only a limited variety of alternative hy-

potheses. Se, to further investigate the test performances in small samples, we need an extended

sets of data generating processes. We also did not compare the performances of our new tests to

those of Wald tests build on the estimation of the model under the alternative hypothesis. The

loss of efficiency in testing has been unclear by abandoning the parametric joint distribution used

at the estimation stage. These issues remain to be considered in future studies.
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DGP0 DGP1 DGP2 DGP3
TEST1 size power possible possible
TEST2 size possible power possible
TEST3 size possible possible power
PLACEBO1 size size size size
PLACEBO2 size size size size

Table 1: Combinations of DGP and test statistics

Note: There are four data generating processes and five tests. Word “possible” implies the test may have power
for the data generating process.
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T + 1 = 4 T + 1 = 8
Ture Mean Bias% RMSE Mean Bias% RMSE

DGP0
δ 0.50 0.47 -6.57 0.20 0.49 -1.27 0.11
β0 1.00 0.20 -79.99 0.82 0.22 -78.03 0.79
β1 1.00 1.01 0.81 0.13 1.00 0.07 0.07
σ2
a 1.00 0.80 -20.01 0.38 0.76 -23.62 0.28

DGP1
δ 0.50 0.33 -34.44 0.24 0.51 1.48 0.09
β0 1.00 0.06 -94.32 0.96 0.02 -98.11 0.99
β1 1.00 0.99 -0.64 0.11 0.99 -1.34 0.06
σ2
a 1.00 1.23 22.70 0.44 0.96 -3.65 0.16

DGP2
δ 0.50 0.52 3.49 0.20 0.49 -1.38 0.11
β0 1.00 -0.18 -117.88 1.19 -0.10 -109.92 1.11
β1 1.00 0.94 -5.97 0.14 0.99 -0.90 0.07
σ2
a 1.00 1.06 5.67 0.42 1.13 13.17 0.27

DGP3
δ 0.50 0.47 -6.41 0.21 0.50 -0.88 0.11
β0 1.00 -1.31 -231.10 2.32 -1.30 -230.13 2.30
β1 1.00 1.00 -0.17 0.13 1.00 0.00 0.07
σ2
a 1.00 1.78 78.12 0.97 1.81 81.13 0.88

Table 2: Bias of RE dynamic probit ML estimation under misspecification (N = 500)

Note: The number of replications in the Monte Carlo simulation is 1000. DGP0, DGP1, DGP2, and GDP3
correspond to the null hypothesis, omitted variables, heteroskedasticity, and non-normality (normal mixture),
respectively. Parameter β0 and σ2

a are not identified.
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T + 1 = 4 T + 1 = 8
Ture Mean Bias% RMSE Mean Bias% RMSE

DGP0
δ 0.50 0.47 -6.98 0.14 0.50 -0.93 0.08
β0 1.00 0.20 -80.39 0.81 0.22 -77.93 0.79
β1 1.00 1.01 0.45 0.08 1.00 -0.19 0.05
σ2
a 1.00 0.79 -21.20 0.30 0.76 -23.59 0.26

DGP1
δ 0.50 0.32 -36.40 0.22 0.51 1.66 0.06
β0 1.00 0.06 -93.77 0.94 0.02 -98.22 0.99
β1 1.00 0.99 -0.76 0.08 0.98 -1.73 0.04
σ2
a 1.00 1.23 22.74 0.35 0.96 -3.68 0.12

DGP2
δ 0.50 0.52 3.82 0.14 0.49 -1.51 0.08
β0 1.00 -0.18 -117.98 1.19 -0.10 -110.02 1.11
β1 1.00 0.94 -6.10 0.10 0.99 -1.25 0.05
σ2
a 1.00 1.05 4.72 0.28 1.13 13.08 0.21

DGP3
δ 0.50 0.46 -8.08 0.15 0.50 -0.78 0.08
β0 1.00 -1.31 -231.12 2.31 -1.29 -229.32 2.30
β1 1.00 1.00 -0.14 0.09 1.00 -0.50 0.05
σ2
a 1.00 1.79 79.15 0.89 1.81 80.78 0.84

Table 3: Bias of RE dynamic probit ML estimation under misspecification (N = 1000)

Note: The number of replications in the Monte Carlo simulation is 1000. DGP0, DGP1, DGP2, and GDP3
correspond to the null hypothesis, omitted variables, heteroskedasticity, and non-normality (normal mixture),
respectively. Parameter β0 and σ2

a are not identified.
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CM LS
J Mean 10% 5% Mean 10% 5%

N = 500, T + 1 = 4
TEST1 2 1.4 5.6 2.2 1.4 5.8 2.6
TEST2 3 2.7 6.0 2.3 2.8 7.0 2.5
TEST3 2 1.8 9.6 5.6 1.8 10.3 6.0
PLACEBO1 2 2.0 9.8 4.8 2.0 10.6 5.0
PLACEBO2 2 2.0 9.1 4.5 2.0 9.4 5.3

N = 500, T + 1 = 8
TEST1 6 5.6 9.2 4.2 6.0 13.6 7.0
TEST2 7 6.7 7.0 3.8 7.0 9.4 5.1
TEST3 2 1.5 6.0 3.2 1.6 6.9 3.4
PLACEBO1 2 2.0 10.2 4.3 2.0 10.6 4.6
PLACEBO2 2 2.2 10.7 5.0 2.2 11.7 5.3

N = 1000, T + 1 = 4
TEST1 2 1.6 5.5 2.4 1.6 5.6 2.4
TEST2 3 2.9 9.0 4.2 3.0 9.5 4.9
TEST3 2 1.6 7.2 3.7 1.6 7.4 4.0
PLACEBO1 2 2.0 9.6 4.8 2.0 9.7 4.9
PLACEBO2 2 2.0 10.4 4.5 2.0 10.5 4.9

N = 1000, T + 1 = 8
TEST1 6 6.0 10.5 5.5 6.2 12.1 7.1
TEST2 7 6.8 7.9 2.8 7.0 9.4 3.8
TEST3 2 1.6 6.8 3.7 1.6 6.8 3.7
PLACEBO1 2 2.0 10.8 5.0 2.0 11.1 5.1
PLACEBO2 2 2.0 10.4 5.1 2.0 10.4 5.2

Table 4: Mean of statistics and empirical size for DGP0

Note: The number of replications in the Monte Carlo simulation is 1000. The means of statistics and rejection
frequencies are given here. J denotes the degree of freedom of the test. DGP0 implies that the data is generated
from the model under the null hypothesis. Theoretically no tests have powers and so all the rejection frequencies
measure the size.
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CM LS
DF Mean 10% 5% Mean 10% 5%

N = 500, T + 1 = 4
TEST1 2 26.2 100.0 99.9 31.4 100.0 99.9
TEST2 3 22.7 99.6 98.7 25.4 99.6 99.2
TEST3 2 1.5 7.3 4.7 1.5 7.9 5.2
PLACEBO1 2 1.9 8.6 4.5 1.9 8.9 4.7
PLACEBO2 2 2.0 9.8 4.2 2.0 10.2 4.2

N = 500, T + 1 = 8
TEST1 6 44.2 100.0 100.0 60.5 100.0 100.0
TEST2 7 32.3 99.6 99.1 38.6 99.7 99.2
TEST3 2 2.7 17.7 10.6 2.8 18.6 11.8
PLACEBO1 2 2.0 8.9 4.0 2.0 9.2 4.1
PLACEBO2 2 2.1 10.0 5.3 2.1 10.3 5.7

N = 1000, T + 1 = 4
TEST1 2 51.9 100.0 100.0 61.6 100.0 100.0
TEST2 3 42.2 100.0 100.0 46.9 100.0 100.0
TEST3 2 1.4 7.3 3.6 1.5 7.8 3.9
PLACEBO1 2 2.0 9.4 4.6 2.0 9.8 4.9
PLACEBO2 2 1.9 10.5 4.9 2.0 10.7 5.2

N = 1000, T + 1 = 8
TEST1 6 85.2 100.0 100.0 114.6 100.0 100.0
TEST2 7 58.8 100.0 100.0 69.1 100.0 100.0
TEST3 2 3.7 28.7 19.4 3.9 28.9 20.7
PLACEBO1 2 1.9 8.0 4.6 1.9 8.4 4.6
PLACEBO2 2 2.1 10.9 5.3 2.1 10.9 5.3

Table 5: Mean and size/power for DGP1

Note: The number of replications in the Monte Carlo simulation is 1000. The means of statistics and rejection
frequencies are given here. J denotes the degree of freedom of the test. DGP1 implies that the data is generated
from the model in the presence of omitted variables. Theoretically TEST1 has power against DGP1.
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CM LS
DF Mean 10% 5% Mean 10% 5%

N = 500, T + 1 = 4
TEST1 2 1.4 5.2 1.9 1.4 5.8 2.5
TEST2 3 3.8 15.9 8.4 3.9 18.1 9.4
TEST3 2 3.1 22.0 15.1 3.2 23.4 15.6
PLACEBO1 2 2.0 10.0 5.4 2.0 10.4 5.8
PLACEBO2 2 2.0 10.5 5.1 2.0 10.9 5.5

N = 500, T + 1 = 8
TEST1 6 6.0 10.2 5.7 6.5 14.6 8.5
TEST2 7 8.2 13.5 5.4 8.6 16.9 8.4
TEST3 2 2.1 11.7 7.0 2.2 12.5 7.8
PLACEBO1 2 2.0 8.6 4.3 2.0 9.3 4.7
PLACEBO2 2 2.0 9.7 5.0 2.0 9.8 5.3

N = 1000, T + 1 = 4
TEST1 2 1.7 9.3 4.0 1.8 9.8 4.4
TEST2 3 5.2 32.2 18.5 5.4 33.7 20.3
TEST3 2 3.3 25.3 15.6 3.4 25.9 16.4
PLACEBO1 2 2.0 10.4 5.3 2.0 10.5 5.4
PLACEBO2 2 1.9 8.3 3.5 1.9 8.6 3.5

N = 1000, T + 1 = 8
TEST1 6 6.6 15.1 9.5 6.9 17.1 11.3
TEST2 7 11.0 36.9 21.9 11.5 41.7 25.4
TEST3 2 2.5 14.2 9.3 2.5 14.2 9.6
PLACEBO1 2 2.0 9.9 5.4 2.1 10.5 5.5
PLACEBO2 2 2.0 11.3 5.2 2.0 11.6 5.2

Table 6: Mean and size/power for DGP2

Note: The number of replications in the Monte Carlo simulation is 1000. The means of statistics and rejection
frequencies are given here. J denotes the degree of freedom of the test. DGP1 implies that the data is generated
from the model in the presence of parametric heteroskedasticity. Theoretically TEST2 has power against DGP2.
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CM LS
DF Mean 10% 5% Mean 10% 5%

N = 500, T + 1 = 4
TEST1 2 1.7 7.2 3.3 1.8 7.6 3.6
TEST2 3 4.9 28.6 19.9 5.0 29.2 20.6
TEST3 2 5.8 40.2 30.0 6.2 40.5 30.4
PLACEBO1 2 2.0 9.2 5.1 2.0 9.8 5.5
PLACEBO2 2 2.1 10.0 4.4 2.1 10.3 4.9

N = 500, T + 1 = 8
TEST1 6 6.3 12.3 5.9 6.7 14.7 8.1
TEST2 7 7.8 15.4 8.4 8.1 18.3 10.5
TEST3 2 2.1 10.2 6.1 2.1 10.4 6.4
PLACEBO1 2 2.0 10.2 4.7 2.0 10.6 5.2
PLACEBO2 2 2.0 9.7 4.9 2.0 9.9 5.0

N = 1000, T + 1 = 4
TEST1 2 1.9 8.7 3.9 2.0 8.8 4.0
TEST2 3 5.8 36.5 26.5 5.8 36.4 26.7
TEST3 2 8.0 64.9 50.5 8.1 64.8 50.8
PLACEBO1 2 2.0 11.0 5.4 2.1 11.1 5.5
PLACEBO2 2 2.0 9.4 6.1 2.0 9.6 6.1

N = 1000, T + 1 = 8
TEST1 6 7.1 18.4 11.9 7.4 19.7 13.5
TEST2 7 7.9 15.6 8.5 8.1 16.6 9.7
TEST3 2 2.5 14.9 8.4 2.6 14.8 8.4
PLACEBO1 2 2.1 9.7 5.0 2.1 9.8 5.2
PLACEBO2 2 2.0 8.7 4.8 2.0 9.1 5.0

Table 7: Mean and size/power for DGP3

Note: The number of replications in the Monte Carlo simulation is 1000. The means of statistics and rejection
frequencies are given here. J denotes the degree of freedom of the test. DGP1 implies that the data is generated
from the model when the unobserved individual effects follow the mixture of normal distributions. Theoretically
TEST3 has power against DGP3.
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Model 1 Model 2
Est. z-value Coef z-value

Married 0.17 1.56 0.17 1.57
Lagged union 0.90 9.69 0.90 9.69
Union 1980 1.42 8.71 1.45 8.80
Avg. married 0.11 0.52 -0.32 -0.34
Married 1982 0.03 0.10
Married 1983 -0.05 -0.18
Married 1984 0.07 0.23
Married 1985 0.44 1.52
Married 1986 0.15 0.55
Married 1987 -0.34 -1.43
Education -0.02 -0.44 -0.02 -0.57
Black 0.54 2.92 0.53 2.89
Year 1982 0.03 0.25 0.03 0.24
Year 1983 -0.09 -0.77 -0.09 -0.77
Year 1984 -0.05 -0.43 -0.05 -0.43
Year 1985 -0.27 -2.19 -0.27 -2.19
Year 1986 -0.32 -2.55 -0.32 -2.55
Year 1987 0.07 0.60 0.07 0.60
Constant -1.75 -3.93 -1.65 -3.74
σ2
a 1.09 1.08

Joint Wald ∼ Chi(6) 6.93
Log likelihood -1283.74 -1283.70
N 545 545
T 7 7

Table 8: RE dynamic probit estimates for union status by Wooldridge (2005) data

Note: The estimates and z-values for a significance test are given in the table. “Joint Wald” implies the joint
significance test on “Married 1982” through M“arried 1987”.
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Model 1 Model 2
Est. z-value Est. z-value

Omitted variables
Married 1982 -0.01 -0.06
Married 1983 -0.11 -0.58
Married 1984 0.06 0.38
Married 1985 0.30 1.79
Married 1986 0.00 -0.01
Married 1987 -0.22 -1.90
Joint χ2

LS ∼ Chi(6) 8.82

Heteroskedasticity
φ0it μ0it × Married 1981 -0.01 -0.04 -0.09 -0.73
φ0it μ0it × Married 1982 0.13 0.84 0.11 0.81
φ0it μ0it × Married 1983 0.01 0.08 0.00 0.01
φ0it μ0it × Married 1984 -0.03 -0.22 -0.01 -0.07
φ0it μ0it × Married 1985 -0.26 -1.63 -0.01 -0.06
φ0it μ0it × Married 1986 0.05 0.27 0.03 0.16
φ0it μ0it × Married 1987 0.25 2.51 0.07 0.63
Joint χ2

LS ∼ Chi(7) 16.80 6.23

Non-normality
φ0it μ

2
0it 0.70 3.67 0.38 2.37

φ0it μ
3
0it 0.61 4.33 0.35 3.03

Joint χ2
LS ∼ Chi(2) 49.66 30.46

Table 9: Misspecification tests results on Wooldridge (2005) data

Note: The estimates and z-values for a significance test are given in the table. “Joint χ2
LS” of different degrees

of freedom tests the omitted variables, heteroskedasticity, and non-normality of the model.
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