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1.  INTRODUCTION 

 In this paper we consider a panel data model of the form: 

(1)         
     

             =    
          ,                  

 

where      
   

  
 ,    

 
 
  and         .  We view    and    as “almost fixed,” in the 

Mundlak (1978), Chamberlain (1980) and Hausman and Taylor (1981) sense that they are 

random but correlated with some or all of the regressors.  We will assume that    contains an 

intercept and so we can take the mean of    and    to be zero. 

 The existing panel data literature tells us how to estimate   and the    under various 

assumptions.  However, the aim of this paper is to estimate           separately.  More precisely, 

we are interested in estimating    while controlling for unobservable time-invariant variables that 

are captured by   . 

 The specific context that we have in mind is that equation (1) represents a stochastic 

frontier production function model, so that     is the log output of firm i at time t.  The     and    

are measures of inputs, or observable variables to control for the production environment.  (In 

many applications the     will be measures of inputs and there will be no    other than intercept, 

but we will opt for generality at this point.)  Differences across firms in the value of    reflect 

differences in the technical efficiency of production, and as in Schmidt and Sickles (1984) a 

conceptual measure of inefficiency is   
             .  These   

  are    and one of them is 

= 0.  Differences in the value of    , on the other hand, reflect differences in the production 

environment that are beyond the control of the firm and which we do not wish to include in our 

efficiency measures.  As a specific hypothetical example, suppose that the firms are farms.  Then 

   could be a measure of the skill of the farmer, and    could represent relevant but unobserved 

features of the production environment like soil quality or microclimate. 
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 Although we will not pursue this point in the paper, our models may have many potential 

applications.  For example, in a panel data earnings (or log wage) study, one might want to 

distinguish the effects of innate ability from those of socio-economic background, without 

necessarily having good measures of either.  Or, in a longitudinal epidemiological study, one 

might wish to distinguish the effects of genetics from those of lifestyle.  How useful our models 

are in answering these kinds of questions is ultimately an empirical question. 

 Obviously we cannot separate    from    without further assumptions.  Our identification 

strategy will be to assume that there are some observable variables that are correlated with    but 

not with   , and some other variables that are correlated with    but not with   .  Continuing with 

our agricultural example, we might assume that the education of the farmer is correlated with 

ability of the farmer but not with soil quality or microclimate, and we might assume that dummy 

variables for the physical location of the farm are correlated with soil quality or microclimate but 

not with the ability of the farmer. 

 The discussion of the previous paragraph is in terms of simple correlations, and it leads to 

one of the models of the paper.  We also consider a second model where the identification 

strategy is to assume that partial autocorrelations equal zero.  In terms of our agricultural 

example, the first model assumes that ability of the farmer is uncorrelated with physical location 

of the farm, whereas the second model assumes that, conditional on education of the farmer, 

ability of the farmer is uncorrelated with physical location of the farm.   

 The plan of the paper is as follows.  Section 2 gives a brief review of the panel data 

stochastic frontier literature, to motivate the models we consider here.  Section 3 lists some 

assumptions and gives some preliminary results from the existing panel data literature.  Section 4 

analyzes the model defined in terms of simple correlations.  Section 5 analyzes the model 
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defined in terms of partial correlations.  Section 6 gives our concluding remarks.  Some technical 

results are given in an Appendix. 

 

2.  A BRIEF REVIEW OF PANEL DATA STOCHASTIC FRONTIER MODELS 

 In this section we will give a brief review of panel data stochastic frontier models, aimed 

at econometricians who may not be familiar with these models.  The point is to provide 

motivation for the models considered in this paper. 

 The stochastic frontier model was proposed by Aigner, Lovell and Schmidt (1977) and 

Meeusen and van den Broeck (1977) in a cross-sectional context.  The model they proposed was 

of the form: 

(2)         
         , i = 1,…,n , 

where    is the log of output of firm i,    contains measures (e.g. logs) of inputs,    is zero-mean 

normal noise, and      is a measure of technical inefficiency.  It is assumed that x, v and u are 

mutually independent, and u is assumed to have a specific parametric distribution, such as half-

normal.  This model was generalized to the panel data setting by Pitt and Lee (1981), who 

considered the model 

(3)           
          , i = 1,…,n , t = 1,…,T . 

They made assumptions similar to those given above, and in particular they still assumed that v 

is normal and u is half-normal.  The distinguishing feature of the model is that the technical 

inefficiency term    is time-invariant. 

 Schmidt and Sickles (1984) were the first to note that, with panel data, time-invariance of 

   can be used to avoid making distributional assumptions for u.  They consider the same type of 

model as Pitt and Lee, as given in (3) above, with v and u viewed as random but without any 
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specific distributional assumptions for v or u.  Defining        , we then have a panel data 

model with individual effects: 

(4)             
        , i = 1,…,n , t = 1,…,T . 

 Schmidt and Sickles suggested the following estimates:     = the usual fixed effects 

(within) estimate;            
   ;              ;            .  Consistency of     as an 

estimate of    requires both     (so that        ) and     (so that            ). 

 A serious problem with this model is that any unobservables that are time-invariant (or 

even very persistent) will end up in the inefficiency measure. That is, inefficiency is measured by 

differences in the   , and the differences in the    will capture both the technical efficiency of 

production (e.g. differences across farms in the skill of the farmer) and also pure heterogeneity 

(e.g. differences across farms in the quality of the soil) because both are likely to be at least 

approximately time-invariant.  This point has been made forcefully by Greene in a number of 

articles (Greene (2004), Greene (2005a), Greene (2005b)).  For example, Greene (2005a, p. 277) 

notes correctly that “by interpreting the firm specific term as ‘inefficiency,’ any unmeasured time 

invariant cross firm heterogeneity must be assumed away.” 

 Greene proposes a “true fixed effects” model that contains an individual effect and an 

i.i.d. one-sided error: 

(5)            
            , 

where    is a fixed effect (parameter), the     are i.i.d. normal, and the     are i.i.d. half-normal.  

He interprets the    as measures of heterogeneity and the       as measures of inefficiency.  

However, it is arguably true that we now have the opposite problem as in the Schmidt and 

Sickles model, because now any time invariant (or very persistent) component of inefficiency 

will tend to end up in the heterogeneity measure and be left out of the inefficiency measure. 
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 Greene also proposes a “true random effects” model in which the    are random 

(specifically, normal) and independent of the regressors and the other error components, but they 

are still viewed as capturing heterogeneity.  This model has been generalized by Kumbhakar, 

Lien and Hardaker (2014) and Colombi, Kumbhakar, Martini and Vittadini (2014), who include 

a one-sided time invariant inefficiency term.  The model (equation (1) of Colombi et al., and 

Model 6 of Kumbhakar et al.) is: 

(6)            
               , 

where    and     are normal, and     and    are half-normal.  All four of these random 

components are independent of each other and of x, and they are i.i.d. over i and (where relevant) 

t.  A likelihood is derived using results on the closed skew-normal family of distributions. 

 The interpretations of these components are as follows: u is short-run inefficiency;   is 

time-invariant (persistent) inefficiency; v is idiosyncratic noise; and   is time-invariant 

heterogeneity.  So we distinguish time-invariant heterogeneity (soil quality) from time-invariant 

inefficiency (skill of the farmer) on the basis of distributional assumptions. 

 While this approach does successfully distinguish heterogeneity from inefficiency, it does 

so under very strong assumptions.  In particular, the number of distributional assumptions is 

rather large.  In this paper we will take an alternative approach, originally suggested by Chen, 

Schmidt and Wang (2014), who noted that “an alternative source of identification would be to 

identify variables that are correlated with inefficiency but not heterogeneity, or vice-versa.”   

 

3.  PRELIMINARY RESULTS 

 The model is as given in equation (1) above.  We wish to distinguish heterogeneity (a) 

from inefficiency (b).  We observe the basic data y, x and z.  We will also assume that we 
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observe some time-invariant variables     that are uncorrelated with v, a, and b (and therefore 

with v and c).  The variables    may include some or all of the time-invariant regressors z and 

also may include the means of some or all of the x’s, as in Hausman and Taylor (1981).  Or, as in 

Amemiya and MaCurdy (1986) or Breusch, Mizon and Schmidt (1989), time specific values of x 

can be used.  But    may also include “outside instruments” that are not part of the basic 

specification. 

 For the benefit of readers who understand stochastic frontiers models better than the 

panel data literature, we will first give a brief discussion of the problem of estimating the 

regression coefficients   in equation (1).  This is essentially the problem of Hausman and Taylor 

(1981), and our discussion follows Wooldridge (2010, pp. 325-328). 

 Here and in the rest of the paper we assume random sampling over i. We make the 

following assumptions. 

 ASSUMPTION 1.  [Strict exogeneity of x with respect to v, conditional on a and b]   

 

          
           , where   

      
       

    . 
 

 ASSUMPTION 2.  [Exogeneity of    with respect to v, a and b] 

 

                                   

 These assumptions imply that     is uncorrelated with   
        and    , and that     is 

uncorrelated with    and   . 

 Under these assumptions, the following moment conditions hold: 

(MC1)                 
     = 0 

 

(MC2)               
     

    = 0 

where for any variable     ,     
 

 
      and             .   

 Note that the sum over t in (MC1) is necessary to make the deviations from means of x 
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orthogonal to c = a + b.  We are not necessarily assuming that the individual (single value of t) 

deviations from means (    ) are uncorrelated with   .  That would be a Breusch-Mizon-Schmidt 

type assumption, and if we made it the individual deviations from means would be part of    .  

Note also that (MC1), which requires only Assumption 1, is sufficient (given some obvious 

regularity conditions) to identify  ; it leads to the so-called “within” estimator.  However, to 

estimate   we need (MC2), in which the number of exogenous instruments    is at least as large 

as the number of time invariant variables z plus the number of x’s whose means are correlated 

with c, and where a rank condition given in Appendix 1 holds.  The exogeneity of these 

instruments requires Assumption 2. 

 Some computational details about the GMM estimates based on (MC1) and (MC2) are 

given in Appendix 1.  For our present purposes will we simply presume that these GMM 

estimates, which we will call    and   , are consistent. 

 Given estimates of   and  , we can estimate the individual effects   .  At this point we 

need to make a distinction between two different types of asymptotic analysis.  Our asymptotics 

in this paper will always involve    .  However, we will distinguish asymptotic analysis as 

    and     (which we will call “large T” asymptotics) from asymptotic analysis as 

    with T fixed (which we will call “fixed T” asymptotics).  Many panel data sets for 

stochastic frontier analysis have n much larger than T, so that the fixed T asymptotics would be 

the more likely to be relevant. 

 The usual estimates of the individual effects    are given by 

(7)            
      

    

These would be, for example, the coefficients of the individual-specific dummy variables in a 

fixed-effects regression calculated as OLS with individual dummies (“OLSDV”).  A simple 
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calculation shows that             terms (involving estimation error in    and   ) that are 

asymptotically (as    ) negligible.  Correspondingly var(   )     
    

  
 

 
  

 .  Note that the 

difference between     and    is negligible under large T asymptotics, but if the difference 

between     and     cannot be ignored under fixed T asymptotics.   

 Consistent estimation of   
      

    
   and    

  is also a standard topic in the panel data 

literature.  If    and    are any consistent estimates of    and  , define the within and between 

sums of squares:                   
        and               

      
           

 
 .  Then 

   
  

 

      
     is a consistent estimate of   

 ,     
  

 

 
     is a consistent estimate of    

 , and 

   
      

  
 

 
   

  is a consistent estimate of   
 .  All of these statements are true in terms of large 

T asymptotics or fixed T asymptotics, although the distinction between    
  and   

  matters only 

when T is fixed. 

 Although we have an estimate of   , namely    , in the fixed T case we should be able to 

do better because the variance of the error in     is known (equal to 
 

 
  

 ).  So we can obtain an 

estimator with smaller mean square error by using the linear projection of    on    : 

(8)                
         

       
    

  
 

   
     . 

(See Appendix 2 for a very brief discussion of linear projections.)  As we would expect, this is a 

shrinkage of     toward zero. 

 

4.  DISTINGUISHING HETEROGENEITY AND INEFFICIENCY – MODEL 1 

 In the previous section we assumed that we observed variables    that were uncorrelated 

with v, a and b.  In this section we will assume that we also have variables    and    such that: 

   is uncorrelated with v and a but correlated with b 
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   is uncorrelated with v and b but correlated with a 

These variables could be inputs or functions of  inputs, but mostly we have in mind other 

variables that would not be in the production function proper, like education of the farmer as part 

of   , or variables indicating the physical location or climate of the farm as part of   . 

4.1 Using Variables That Are Correlated with Inefficiency but Not with Heterogeneity 

 For the moment we will focus on the variables     that are uncorrelated with     and    

but correlated with   .  We make the following additional assumption (which we will maintain in 

addition to Assumptions 1 and 2). 

 ASSUMPTION 3.   

                       

 Note that we do not assume that           , and indeed we want b and    to be 

correlated.  That is what distinguishes    from   .   

 Let                       ), where “  ” represents the uncentered covariance, 

which is appropriate since     )  = 0.  Then we have the following additional moment 

conditions: 

(MC3)               
     

         = 0 . 

 Since (MC3) contains the same number of new parameters (   ) as moment conditions, it 

does not affect the GMM estimates    and    from (MC1) and (MC2).  It simply yields the 

estimate of    , which is  

(9)       
 

 
            

      
      

 

 
         . 

 Now we need to recover estimates of the   .  Define the linear projection: 

(10)       
     + error  ,        

       ,                   
  . 

We observe     so we can calculate      
 

 
       

 
 .   Also from (9) we have an estimate of 
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   , so we can construct an estimate of   :  

(11)          
     

      . 

 As in Schmidt and Sickles (1984), our inefficiency measures are differences in the   .  

That is, our estimate of inefficiency for firm i is                 .  The     are    and one of 

them is = 0. 

4.2 Using Variables That Are Correlated with Heterogeneity but Not with Inefficiency 

We now also will assume that we observe variables     that are uncorrelated with     and 

   but correlated with   .  This allows us to estimate the   , and it also allows us to improve our 

estimates of the    when     and     are correlated. 

For this case we make the following additional assumption (which we will maintain in 

addition to Assumptions 1, 2 and 3).   

 ASSUMPTION 4.   

 

                       

 

 Note that we do not assume that           . 

 Under Assumption 4, the following moment conditions hold: 

(MC4)               
     

         = 0 

 Under Assumptions 1, 2, 3 and 4, the moment conditions (MC1), (MC2), (MC3) and 

(MC4) hold.  As discussed above, (MC1) and (MC2) yield the estimates of   and   and (MC3) 

gives us the estimate of    .  Finally (MC4) implies the estimate of    , which is  

(12)       
 

 
            

      
      

 

 
          . 

This would lead to an estimate of     that is similar in spirit to the estimate of    given in (11) 

above; namely,         
     

     . 

 An interesting observation is that this added assumption allows for a better estimate of   , 
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if    and    are correlated.  We consider the linear projection of b on    =  
  

  
 : 

(13)                 
         =     

       
      

      
 
  

 
  

  
  

      =    
               , 

where             
      

      
   and where     represents a block of    .  And similarly, 

although we are not primarily interested in the   , we have the result that         

    
               .  In terms of estimates, (13) leads to  

(14)           
                    

and there is the corresponding expression          
                   . 

 The estimate in (14) is indeed better than the one in (11).  For    in (11) we have var(  ) = 

   
    

     .  For    in (14) we have var(  ) =    
        where                

      
  .  

Here           
      is smaller than    , so its inverse is bigger.  Therefore var(  ) is bigger 

than var(  ).  That is good because it is the explained variation.  The unexplained variation (e.g. 

var(    )) is smaller. 

4.3  Projections onto     

 The methods of Sections 4.2 and 4.3 yield estimates of    and    but these do not add up 

to either     or    , whereas in some sense we ought to respect this adding up constraint.    An 

obvious thought is to consider the best linear predictors given by the linear projections of    and 

   on    .  To do so, we make an additional assumption, which we maintain along with 

Assumptions 1-4. 

 ASSUMPTION 5. 

                . 
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 Then we have the following estimates of    and   . 

(15)      
         

       
     

  
 

   
               

         

       
     

  
 

   
      . 

These estimates satisfy the adding up constraint that            .  

 The point of Assumption 5 is to make cov(        
 , as opposed to   

     , and 

similarly for cov(     .  This is not of fundamental importance, but we do not wish to have to 

estimate    . 

 The results in (15) are not feasible without estimating or specifying   
  and   

 .  We can 

estimate    
  and   

  from standard panel data methods, as discussed above, but without further 

assumptions we cannot estimate   
  and   

 .  We will return to this point in Section 4.4.  

 In equation (15) we estimated a and b by projecting them onto   , whereas in the previous 

section we estimated a and b by projecting them onto    =  
  

  
 .  We ought to be able to improve 

on either of these estimates if we project a or b onto      
  
  

  

     So now we will have 

(16A)                   
           =    

     
            

where    
   

    
    

 

         

         

  is shorthand for     
   .  And similarly 

(16B)                        =    
       

        .   

(16C)                        =    
     

     
         

 Let          and     be the estimates that we get if we evaluate (16A), (16B) and (16C) using 

consistent estimates of   
    

    
     

          and V.  Then these are better (smaller mean 

squared error) estimates than          and    .  Furthermore, they satisfy the adding up constraint 

that             . 
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 We have         in the large T case though not in the fixed T case.  In the large T case, 

  
     

  and therefore 

(17)                
     

     
        = [1 , 0 , 0]    =    ,  

where the term [1 , 0 , 0] arises because     
     

     
   is the first row of V. 

4.4 Estimation of   
  and   

   

 As mentioned above, consistent estimation of   
  and    

  is a solved problem.  As a result 

the estimator     given in equation (8) is feasible, and so is     in (16C). 

 Without further assumptions it does not seem possible to obtain consistent estimates of 

  
  and   

  (separately).  However, we can provide some bounds, as follows.  We know that 

   
 
  

   
  

    

      
  must be positive semi-definite, so its determinant must be greater than or 

equal to zero.  Using a result from Searle (1982, p. 258),  
  

    
 

      
  =          

  

   
    

      .  Therefore   
     

    
       .  Similarly   

     
    

       .  Therefore 

   
    

        
   and     

    
        

 .   

 However, this is not the tightest bound that we can obtain.  We also know that    
 
    

 
  

   
 

   
  must be positive semi-definite, where     

   

 
    This implies that   

    
       

 , or    
          

 .  This is a tighter bound than the one in the previous paragraph, because 

       
  .  (See the discussion at the end of Section 4.2.)  By the same argument, we also have 

the similar result that    
          

  

 We also know that   
    

    
  so that   

    
     

        and similarly   
    

  

   
       .  Therefore 

(18)     
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   and     
          

    
     

        . 

 We will want to pick values of    
  and    

  that are in the allowable ranges given in (18), 

and that satisfy     
     

     
  .  (This equality is necessary for the adding up constraint 

              to hold.)  Obviously there is more than one such set of values, and subjectively 

choosing among them is not necessarily an attractive notion.   

 We now turn to the issue of finding further assumptions such that we can estimate   
  and 

  
  consistently.  To do so we will assume parametric models for          and for         .  

We will therefore make the following assumption, which we will maintain in addition to 

Assumptions 1-2.  (There is no need for Assumptions 3-5 because they are implied by 

Assumption 6.) 

 ASSUMPTION 6. 

    is independent of        and    

       b,          and                 
  

        ,          and                 
  

                

             
   

       
           with      

             
   

       
           with      

 These assumptions are much stronger than Assumptions 3, 4 and 5, because they make 

statements about independence and conditional expectations, not just correlations, and because 

they assume parametric forms for some of the conditional expectations, and because they assume 

that          and          are not constant (there is conditional heteroskedasticity).  The 

independence assumption for   is stronger than needed but is made to simplify the conditioning 

assumptions and arguments that follow.  The specific functional forms given in the last two lines 
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of Assumption 6 are obviously not the only ones that could have been chosen, but they suffice to 

show that with suitable parametric assumptions we can estimate   
  and   

   

 We can note that   
   

 is the expected value of       conditional on       ; loosely, 

conditional on    =     ).  This is almost but not quite the same as   
 , which is the 

unconditional expectation of    , and which (by the law of iterated expectations) equals the 

expectation (over the distribution of   ) of   
   

       
          .  This is different from   

   
 

because         
              due to the nonlinearity of the exponential function.  Similar 

statements apply to   
   

 and   
 . 

 Clearly     
           

    
             and so, under Assumption 6, 

(19A)      
         

    
   

       
            

and similarly 

(19B)      
         

    
   

       
            

Now consider nonlinear least squares based on (19A), with our dependent variable equal to    .  

That is, we minimize the sum of squares 

(20A)            
    

    
   

       
            

 

  

with respect to   
    

   
 and   .  This yields an estimate of   

 , which we will call    
 , plus 

estimates of   
   

 and    that we will ignore.  Similarly, we can consider nonlinear least squares 

based on (19B), in which case we minimimize the sum of squares 

(20B)            
    

    
   

       
            

 

  

to get an estimate    
 , plus estimates of   

   
 and    that we will ignore. 

 Under reasonable regularity conditions, the estimates    
  and    

  are consistent under 
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“large T” asymptotics.  However, in the “fixed T” case, the difference between     and   , which 

is     plus asymptotically negligible terms, contributes an extra additive term 
 

 
  

  to      
       

and      
      .  We need to correct for this term, which leads us to the estimates 

(21)     
     

  
 

 
   

    and      
     

  
 

 
   

  . 

These estimates are consistent in the “large T” case and also in the “fixed T” case. 

 These estimates are presumably not efficient because they ignore the information about 

  
  in (20A) and the information about   

  in (20B).  However, to obtain the projections that we 

want (involving    ) these are nuisance parameters and a consistent estimate is all that we really 

need. 

 

5.  DISTINGUISHING HETEROGENEITY AND INEFFICIENCY – MODEL 2 

 We now will consider Model 2, in which the identifying assumption for b is that the 

partial correlation of    and a, given   , equals zero.  We will maintain Assumptions 1, 2 and 5 

as above, but we will replace Assumptions 3 and 4 with the following assumption. 

 ASSUMPTION 7. 

               and              

             does not depend on    

             does not depend on    

 Define                                                  .  Then the 

identifying assumption for Model 1 was that        and       .  Assumption 6 is different.  

Assumption 6 does not imply that        and          nor do        and        imply 

Assumption 6.  This reflects the difference between simple and partial correlations. 

 To think about a case in which Model 2 is appropriate and Model 1 is not, let us return 
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for a moment to our hypothetical agricultural example in which b is ability of the farmer, a is soil 

quality,    is education of the farmer, and    is physical location of the farm.  Suppose there are 

two locations, and location A has better soil than location B, and also a more conveniently 

located school, so that education will tend to be higher in location A than in location B.  Suppose 

people are randomly assigned to the two locations.  Now suppose that education raises the ability 

of the farmer.  So now ability will be correlated with location (      , but conditional on 

education, ability will not be correlated with location.  Also soil quality will be correlated with 

education (      , but conditional on location it will not be correlated with education.  So 

Model 2 applies. 

 Conversely, to think about a case in which Model 1 is appropriate, suppose that the 

schools are equally convenient in the two locations, and that education does not increase the 

ability of the farmer, but more able people like school more and so they get more education.  

Then ability is correlated with education and not with location, and soil quality is correlated with 

location and not ability.  So Model 1 applies. 

5.1 Projections onto    and    

 As in Section 4.2, let    
      

      
   and let     represents a block of    .  Then the 

linear projection of b on    =  
  

  
  is: 

(22)                     =     
      

    
      

      
 
  

 
  

  
  

    =     
        

            
        

        

Assumption 7 requires that         should not depend on   , so we must have    
        

     

=  0, or 

(23)     
      

           . 
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(Note that, as discussed above,       unless    and    are uncorrelated.)  Substituting this for 

   
  in equation (22), we obtain 

(24)             
                       =    

    
     , 

using a standard result on partitioned inversion. 

 The same logical argument establishes that    
      

            and that         = 

   
    

    . 

 Let        
      and        

      so that           
    and          

    .  Then 

(25)                                           =   
       

    . 

We can obtain consistent estimates of    and   , say     and    , by OLS of    on    (i.e. on    and 

  ).  This leads us to our estimates of    and   : 

(26)         
      ,         

     . 

 Although we do not need them to calculate the estimates in (23), we can also construct 

estimates of the covariances              and     .  Specifically,             ,             , 

                      and                      . 

5.2 Projections Involving    

 As in Section 4.4, we can also consider estimates that use the value of   .  So once again 

we define      
  
  

  

  and       
     

   
    

    
 

         

         

 .  We can calculate an improved 

estimate of c: 

(27)            
               

   =    
     

     
     

     
       

   ,  

evaluated at the estimated values of        and V.  This estimate is feasible because we can 

estimate all of the needed variances and covariances without further assumptions. 

 If we have estimated or specified values of   
  and   

 , then we can also calculate 
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(28A)             
               

   =    
     

     
       

    

(28B)            
               

   =    
     

     
       

    , 

where these would be evaluated at the estimated values of       ,        and V.  These should be 

better estimates than     and     because we are projecting onto more explanatory variables.  They 

also have the desirable property that             . 

 There remains the issue of obtaining estimates of   
  and   

 .  As in Section 4.4, we do 

not see how to do this without further assumptions, but we can provide bounds similar to those in 

equation (18) above.  It is still the case that    
 
  

   
  

    

      
  must be positive semi-

definite, which implies that   
     

    
        and therefore   

     
    

     .  As before, 

however, we can obtain a tighter bound.  It is the case that    
 
    must be positive semi-definite, 

and we can write    
 
     

  
   

 

   
  where     

   

   
 .  This is the same as in Section 4.4 

except that now      .  So the fact that this matrix is positive semi-definite implies that 

(29)    
    

      . 

Since   
          

    
     , this is a tighter bound than above.  And, similarly,   

    
       

where     
   

   
 . 

 The same logical argument as in Section 4.4 leads to the following bounds (the analogue 

of equation (18) above): 

(30)    
         

    
    

        

   and    
         

    
    

       . 

We will want to pick values of    
  and    

  that are in the allowable ranges given in (27), and that 

satisfy     
     

     
  so that             .   
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 As we did for Model 1 in Section 4.4, we now turn to the issue of finding further 

assumptions such that we can estimate   
  and   

  consistently.  In the present case this will 

require parametric models for             and            .  We make the following 

assumption, which we will maintain in addition to Assumptions 1 and 2.  (It implies Assumption 

7.) 

 ASSUMPTION 8. 

    is independent of        and   . 

                 
    

                 
    

                

                
   

       
           with      

                
   

       
           with      

 Since     
                

    
                 , under Assumption 8, 

(31)      
             

   
       

              
   

       
            

This leads naturally to a nonlinear least squares estimator in which we minimize 

(32)           
    

   
       

              
   

       
            

 

  

In the “large T” case this should yield consistent estimates of the parameters   
   

   
   

    and   .  

In the “fixed T” case we need to incorporate the variance 
 

 
  

  due to the term    , which is not 

part of    but is part of    .  That is, the nonlinear least squares estimator would now minimize 

(33)           
  

 

 
   

    
   

       
              

   
       

            
 

  

where    
  is a consistent estimate of   

  (e.g. based on the within estimate of the basic model, as 

discussed in Section 3 above). 
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 As in Section 4.4, it is not the case that   
   

   
 .  However, we can construct a 

consistent estimate of   
  as 

(34)     
  

 

 
    

   
         

               
    

 
        

             

This calculation is a sample equivalent of the law of iterated expectations.  A similar result holds 

for    
 . 

  

6.  CONCLUSIONS 

 In this paper, we have proposed methods for distinguishing two kinds of individual 

effects (“heterogeneity” and “inefficiency”) in a panel data regression model, without making 

strong distributional assumptions.  In one model, we do so by assuming that we observe some 

variables that are correlated with heterogeneity but not inefficiency, and some other variables 

that are correlated with inefficiency but not heterogeneity.  In a second model, we assume 

instead that the joint linear projection of inefficiency on the two sets of observable variables 

depends on only one set and not on the other, and vice versa for heterogeneity.  This corresponds 

to setting partial correlations, opposed to simple correlations, equal to zero.   

 As discussed in Section 2 of the paper, other papers have separated heterogeneity from 

inefficiency based on distributional assumptions (e.g. heterogeneity is normal and inefficiency is 

half normal).  Like the assumptions of this paper, these are strong assumptions.  An obvious 

question for further research is to ask how to test either or both sets of assumptions. 
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APPENDIX 1 – The Hausman and Taylor Estimator 

 We will first define some notation.  The model is        
       where           .  

We write the model for all T observations for firm i as            and for all NT 

observations we write       .  Similarly we have matrices of deviations from means     

and   .  Define           
 , where    is a vector of ones, and then    for all NT 

observations.  Finally, we define the instruments            ] for T observations and H for all 

NT observations. 

 Now we rewrite the moment conditions (MC1) and (MC2) as 

(A1)      
            

These moment conditions hold under Assumptions 1 and 2.  They identify   if there are enough 

of them (in obvious notation,      ) and if the usual rank condition holds (    
    has full 

column rank). 

 GMM of   can be based on (A1).  Let       
     

    and         , and 

correspondingly their estimates are    and     where    
 

 
   

       
     and where            .  

Here    can be a preliminary estimate, like 2SLS, or it can be part of a continuous updating GMM 

procedure.  Then the GMM estimate based on (A1) is: 

(A2)            
               

      

(Continuous updating means that the initial estimate of   leads to an estimate of Ω, which leads 

via (A2) to a new estimate of  , which leads to a new estimate of  , etc.) 

 The above procedure does not put any restrictions on the weighting matrix  .  We can 

impose restrictions on   under further assumptions.  The next assumption is common in the 

panel data literature (and was made by Hausman and Taylor). 
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 ASSUMPTION NCH  [No conditional heteroskedasticity] 

  Var(          
  for all t 

  Var(         
   

  Cov(             for all t 

 Under NCH, it is well known that     
       

    where    is the     idempotent 

matrix with each element equal to 1/T.  Hausman and Taylor (1981) show how to estimate   
  

and   
 , so it is easy to get an estimate of   and therefore of   .  We can use that estimate in 

(A2).  There is no asymptotic advantage to doing so, as compared to using the unrestricted 

weighting matrix, but the resulting estimate of   is probably more numerically stable and has 

better finite sample properties than when the unrestricted weighting matrix is used. 

However, as noted by Hausman and Taylor, under NCH we can do better.  It is well 

known that (up to proportionality)                 , where       
     

     
  .  Now 

we can transform the regression equation to “whiten” the errors: 

(A3)                          . 

This amounts to “1- ” differences, e.g. the     element of         is             .  Then we 

can estimate (A3) by standard IV with instruments   .  In matrix terms for all NT observations 

we have  

(A4)           
    

       
          

    
         

    
       

          
    

  . 

This is the Hausman and Taylor “efficient” estimator. 

 

APPENDIX 2 – Facts about Linear Projections 

 Let    
  

  
  and let y be scalar.  Then              

    is the linear projection of y on 

x.  It has the property that          is uncorrelated with x.  Also var(              
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and var                     
     . 

 We can compare this to what happens if you only use   .  Then                
     .  

Also var(               
            

     , and var                      
      

           
     .  With the larger set of explanatory variables x, the explained variance is 

larger and the unexplained variance is smaller. 
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