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Abstract

This paper considers estimation of panel data models with (multiplicative) individual
fixed effects in the variances of the errors, e.g., σ2

i,t = σ2
i or σ

2
i,t = σ2

iλ
2
t . The cross-section

dimension of the panel (N) is assumed to be large but the time dimension (T ) can be
small or large. The paper shows that under certain conditions, which depend on whether
T is fixed or large, the common parameters in static (or stationary) and non-stationary
dynamic linear panel data models can be consistently estimated by a Weighted First
Difference Maximum Likelihood (FDML) estimator and a Weighted Random Effects or
Fixed Effects ML (REML or FEML) estimator, respectively, and derives their asymptotic
distributions. These estimators weigh the data with estimates of the σ2

i and are shown to
be asymptotically effi cient under joint N, T asymptotics and normality. We also discuss
two-step Weighted Quasi ML estimators and Hybrid Quasi ML estimators that are gen-
erally still joint N, T consistent for the common parameters in non-stationary dynamic
linear panel data models with arbitrary heteroskedasticity, i.e., when σ2

i,t 6= σ2
iλ

2
t . The

paper then introduces Individually Weighted GMM (IWGMM) estimators that generalize
the Minimum Distance estimator of Chamberlain (1982). Under normality and when T
is fixed, the optimally weighted IWGMM estimators for variance parameters are more
effi cient than the corresponding Weighted ML estimators, whereas their unweighted ML
and GMM counterparts are both effi cient under (cross-sectional) homoskedasticity. Fi-
nally, Monte Carlo results show that the weighted estimators are more effi cient than
their unweighted counterparts when T is not too small and there is a significant degree
of heteroskedasticity in the cross-section dimension of the panel.
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1 Introduction

This paper studies effi cient estimation of common parameters in panel data models with

(multiplicative) individual fixed effects in the variances of the errors, e.g. panel models

with σ2
i,t ≡ E(ε2

i,t) = σ2
i or E(ε2

i,t|zi,t) = σ2
iλ

2
t exp(z′i,tϑ). We consider estimation of both

‘static’models, including covariance stationary models, and ‘non-stationary’ dynamic

panel models, i.e., models with arbitrary initial conditions, including a panel AR(1)-

GARCH(1,1) model with E(ε2
i,t|It−1) = hi,t = σ2

i h̃i,t and h̃i,t = α0 + α1(ε2
i,t−1/σ

2
i ) +

β1h̃i,t−1, where the set It−1 contains information until time t − 1. The cross-section

dimension of the panel (N) is assumed to be large but the time dimension (T ) can be

small or large.

The paper first shows that after a first-difference transformation and under certain

conditions the common parameters in static or covariance stationary linear panel data

models with additive fixed individual effects in the mean and multiplicative individual

fixed effects in the variance can be consistently estimated by Maximum Likelihood. We

call the resulting estimator the Weighted First Difference Maximum Likelihood (FDML)

estimator because it weights the data by estimates of the σ2
i . The paper then shows that

dynamic linear panel data models with arbitrary initial conditions, random effects (RE)

or fixed effects (FE) in the mean and variances modelled as σ2
i,t = σ2

iλ
2
t can also be

consistently estimated by (Quasi) Maximum Likelihood. We refer to these estimators

as the Weighted (Quasi) REML estimator and the Weighted (Quasi) FEML estimator,

respectively. In each case the conditions for consistency of the Weighted MLE are non-

trivial when T is fixed and only N → ∞. The paper also derives the large N , fixed T
and the joint N, T asymptotic distributions of the three Weighted ML estimators. The

estimators are shown to be asymptotically effi cient under joint N, T asymptotics and

normality. We also discuss two-step weighted Quasi ML estimators and Hybrid Quasi

ML estimators that are generally still joint N, T consistent for the common parameters in

non-stationary dynamic linear panel data models with arbitrary heteroskedasticity, i.e.,

when σ2
i,t 6= σ2

iλ
2
t .

Next the paper introduces Individually Weighted GMM (IWGMM) estimators that

generalize the Minimum Distance and GMM estimators of Chamberlain (1982) and

Hansen (1982), respectively.1 Under normality and when T is fixed, the optimally

1In addition to weighing the individual data, the IWGMM estimators also use a weight
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weighted IWGMM estimators for the variance parameters in both static/stationary and

nonstationary linear panel data models are asymptotically more effi cient than the cor-

responding Weighted ML estimators, whereas their unweighted FDML and GMM coun-

terparts are both effi cient under cross-sectional (CS) homoskedasticity. Furthermore,

under non-normality the optimally weighted IWGMM estimators for common parame-

ters in these models are generally more effi cient than the corresponding Weighted ML

estimators.

The common parameters in the panel models can still be consistently estimated by

estimators that ignore cross-section heteroskedasticity, i.e., by the unweighted ML and

GMM estimators. However, Monte Carlo results confirm that the (optimal versions of the

individually) weighted estimators are more effi cient than their unweighted counterparts

when T is not too small and there is a significant degree of heteroskedasticity in the

cross-section dimension of the panel.

It has been known since Neyman and Scott (1948) that ML estimators of common

parameters can be inconsistent or asymptotically ineffi cient in the presence of so-called

incidental parameters. Kiefer (1980) discussed ML estimation of the panel regression

model with fixed effects in the mean and homogenous unrestricted covariance matrices.

He first showed that the standard ML estimator for the covariance matrix is inconsistent

and then proposed a Conditional ML estimator for the slope parameters. MaCurdy

(1982) has suggested to base the ML estimators for the common parameters on the

likelihood function of the first-differences of the data. Chamberlain (1980) and Anderson

and Hsiao (1982) introduced the REML estimator for the dynamic panel AR(1) model

with arbitrary initial conditions. Hsiao et al. (2002) and Kruiniger (2001) introduced

versions of the FEML estimator for this model. Kruiniger (2008) establishes consistency

of the FDML estimator for the covariance stationary AR(1)/unit root panel model with

fixed effects in the mean under CS homoskedasticity and derives its limiting distribution

under various asymptotic plans for N and T . Alvarez and Arellano (2003) discusses

the joint N, T asymptotic properties of the REMLE under homoskedasticity. Alvarez

and Arellano (2004) and Kruiniger (2013) generalize the REMLE by allowing for time

series heteroskedasticity; the latter also shows that the RE- and FEMLE are still large

N , fixed T consistent for the common parameters under arbitrary heteroskedasticity and

states the large N , fixed T asymptotic distributions of these Quasi MLEs, also for the

matrix to weigh the moment conditions just like any other GMM estimator.
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unit root case. Hawakaya and Pesaran (2012) derive the asymptotic distributions of the

unweighted Quasi FEMLE when σ2
i,t = σ2

i . Finally, Bai (2013) obtains the REQMLE

for the model with time series heteroskedasticity using a factor analytical approach and

derives its joint N, T asymptotic properties. He notes that this unweighted REQMLE is

still joint N, T consistent for the common parameters under arbitrary heteroskedasticity

and can be extended to the case with time dummies. He also shows that the REQMLE

is both large N, fixed T and joint N, T asymptotically effi cient if the individual vectors

of errors are i.i.d., the errors are also independent across time, and are either normal or,

in case T is fixed, have finite 2 + ς moments for some ς > 0.

The literature has studied asymptotically effi cient estimation of regression models for

cross-sectional or time series data with heteroskedasticity of unknown form. Cragg (1983)

proposed an instrumental variable estimator for the slope parameters of a linear regres-

sion model that is at least as effi cient asymptotically as the OLS estimator. Robinson

(1987) discusses an adaptive estimation method that is based on nearest neighbour non-

parametric regression. In contrast to Cragg’s estimator and our approach, the adaptive

estimation method assumes that the variances depend on (some of) the regressors. Li

and Stengos (1994) discuss adaptive estimators for RE and FE panel data models with

heteroskedasticity of unknown form.

Meghir and Windmeijer (1999) discuss a GMM estimator for the autoregressive para-

meter in a panel AR(1) model with multiplicative individual fixed effects in the variances

of the errors. However, their estimator does not weigh the data with estimates of the

σ2
i and is therefore not asymptotically effi cient under CS heteroskedasticity. Pakel et al.

(2011) consider a m-profile composite likelihood estimator for a panel GARCHmodel with

individual specific unconditional variances. We will consider standard ML estimation of

the same panel GARCH model.

The plan of the paper is as follows. Section 2 discusses ML estimation of static

panel data models with CS heteroskedasticity. Section 3 considers ML estimation under

general heteroskedasticity. Section 4 discusses ML estimation of nonstationary dynamic

panel data models with CS heteroskedasticity. Section 5 considers GMM estimation under

multiplicative CS heteroskedasticity. Section 6 reports the results of various Monte Carlo

experiments while section 7 concludes. The appendices contain the proofs of the theorems.
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2 ML estimation of static panel data models with

cross-sectional heteroskedasticity

In this section we will consider ML estimation of the following panel regression model

with fixed effects in both the mean and the variance:

yi −Xiβ − µiι = εi, (1)

σ−1
i (V (Wi, θ0))−1/2εi, i = 1, ..., N, are i.i.d.(0, I),

Wi, i = 1, ..., N, are i.i.d., and

σ−1
i (V (Wi, θ0))−1/2εi ⊥ Wi, i = 1, ..., N,

where the T -vector yi and the (T×K)matrixXi contain the T observations for individual

i on the dependent variable and K regressors, εi is a T -vector of errors and ι is a T -vector

of ones; β contains the true common (i.e., common) slope parameters; θ0 contains the true

common covariance parameters; and µi and σ
2
i , i = 1, ..., N, are true incidental mean and

variance parameters, respectively. Note that the individual variance effect σ2
i enters the

formula of the covariance matrix in a multiplicative way. This parametrization of the co-

variance matrix is natural given the interpretation of the variance as a scaling parameter.

We will assume that the elements of V (Wi, θ) = Vi(θ) = Vi are smooth functions of the

elements of θ. The framework in (1) includes generalizations of the covariance stationary

autoregressive panel data model discussed in Kruiniger (2008). For instance, Vi could

be the covariance matrix of heteroskedastic AR(1) errors, i.e., Vi,s,t(θ0) = λ̃
2

min(s,t)ρ
|t−s|,

s, t = 1, ..., T, with |ρ| < 1, λ̃
2

t = ρ2λ̃
2

t−1 + λ2
t , t = 2, ..., T, a normalisation e.g. λT = 1,

and θ0 = (λ̃
2

1 λ
2
2 λ

2
3 ... λ

2
T−1 ρ)′.

To focus the discussion we will assume that β = 0. After first-differencing the model

to remove heterogeneity in the mean, we obtain

σ−1
i (Φ(Wi, θ0))−1/2Dyi, i = 1, ..., N, are i.i.d.(0, I), (2)

where Φ(Wi, θ) = Φi(θ) = Φi = DViD
′ andD denotes a (T−1×T )matrix withDk,k = −1

and Dk,k+1 = 1, k = 1, ..., T − 1, and Dk,l = 0 elsewhere. Note that (Φ(θ0))−1/2Dyi⊥Wi.

The conditional Gaussian log-likelihood function of the Dyi given the Wi reads
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N∑
i=1

l(Dyi; θ, s
2
i |Wi) = −N(T − 1)

2
log(2π)− (T − 1)

2

N∑
i=1

log s2
i (3)

−1

2

N∑
i=1

log |DViD′| −
N∑
i=1

1

2s2
i

(y′iD
′ (DViD

′)
−1
Dyi).

Let Zi = Dyiy
′
iD
′. Then we can write the likelihood equations as

1

2

N∑
i=1

tr(
dΦ−1

i

dθl
(Φi −

Zi
s2
i

)) = 0, l = 1, ..., dim(θ), (4)

and
T − 1

2s2
i

− 1

2s4
i

tr(Φ−1
i Zi) = 0, i = 1, ..., N. (5)

Solving the N equations in (5) for s2
i , i = 1, ..., N, yields

σ̃2
i (θ) =

1

T − 1
tr([Φi(θ)]

−1Zi), i = 1, ..., N. (6)

After substituting the σ̃2
i (θ) for the s

2
i in (4), we obtain the following system of p concen-

trated likelihood equations:

−1

2
N−1

N∑
i=1

[
dvecΦi

dθ′
]′(Φ−1

i ⊗ Φ−1
i )vec(Φi −

Zi

σ̃2
i (θ)

) = 0. (7)

These equations define the First Difference ML Estimator (FDMLE) for θ0, viz. θ̂FDMLE.

Note that when T = 2, Φi(θ)− Zi/σ̃2
i (θ) = 0 for any θ, so we need at least that T ≥ 3.

We need to introduce some additional notation. Let Θ be the parameter space for θ

and let ‖A‖ = tr(A′A)1/2 be the Euclidean norm of a matrix A. Moreover, let Si(θ) =

Φ
−1/2
i ZiΦ

−1/2
i /((T − 1)σ̃2

i (θ)).

Note that E(Φi(θ0)−Zi/σ2
i ) = 0. If the elements of (Φi(θ0))−1/2Dyi are symmetrically

i.i.d. for each i ∈ {1, ..., N}, then it is easily verified that E((T − 1)Si(θ0)) = I and

E(Φi(θ0)− Zi/σ̃2
i (θ0)) = 0.2

In order to derive the asymptotic properties of the FDMLE we make the following

assumption:

2If Dyi|Wi ∼ N(0, σ2
iΦi(θ0)), i = 1, ..., N , then the diagonal elements of Si(θ0) follow a

Beta(1
2 ,

T−2
2 ) distribution and the non-diagonal elements of Si(θ0) are symmetrically distributed

around zero.
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Assumption A: Let gi(θ) = −(dvecΦi
dθ′ )′([Φi(θ)]

−1 ⊗ [Φi(θ)]
−1)vec(Φi(θ)− Zi/σ̃2

i (θ)).

(i) θ0 ∈ int(Θ), dim(θ) is fixed, and Θ is compact.

(ii) Φi(Wi, θ) is a PDS matrix ∀θ ∈ Θ and ∀vec(Wi) ∈ support(vec(Wi)).

(iii) (((σ2
iΦi(θ0))−1/2Dyi)

′ vec(Wi)
′)′, i = 1, . . . , N, are i.i.d.

(iv) (Φi(θ0))−1/2Dyi ⊥ Wi ∀i ∈ {1, ..., N}.

(v) gi(θ) is a continuous function at each θ ∈ Θ uniform in T a.s.

(vi) E(gi(θ)) = 0 iff θ = θ0 uniform in T.

(vii) supθ∈Θ

∥∥∥(NT )−1
∑N

i=1 gi(θ)− T−1E(gi(θ))
∥∥∥ p→ 0.

(viii) If T is fixed: [(σ2
iΦ(θ0))−1/2Dyi]t are symmetrically i.i.d. ∀i, t.

We have the following result:

Theorem 1 Suppose that assumption A holds. Then the FDMLE for θ in model (1) is

consistent when N →∞ irrespective of whether T is fixed or T →∞.

The result follows by applying theorems 2.1 and 2.6 in Newey and McFadden (1994),

henceforth NMcF. When T is fixed we can replace A(vii) by E (supθ∈Θ ‖gi(θ)‖) < ∞.
When T → ∞, A(vii) may be verified by using a uniform in θ version of results in

Phillips and Moon (1999), e.g. their Theorem 1 or Corollary 1.

Thus the FDMLE is consistent for the common covariance parameters under unre-

stricted multiplicative CS heteroskedasticity. Kiefer and Wolfowitz (1956) have consid-

ered ML estimation of a similar model where the σ2
i are i.i.d.

Let Fi(θ) = [dvecΦi
dθ′ ]′(Φ

−1/2
i ⊗Φ

−1/2
i ). Since vec(Φi(θ)−Zi/σ̃2

i (θ)) = (Φ
1/2
i ⊗Φ

1/2
i )vec[I−

(T − 1)Si(θ)], it is easily seen that gi(θ) = −Fi(θ)vec[I − (T − 1)Si(θ)]. Furthermore, let

G(θ0) = (T−1)2T−1E{Fi(θ0)Cov(vec(Si(θ0)))F ′i (θ0)}. To establish asymptotic normality
of the FDMLE we add the following assumption:3

Assumption B:

(i) gi(θ) is continuously differentiable in a neighborhood N of θ0 uniform in T a.s.

(ii) (NT )−1/2
∑N

i=1 gi(θ0)
d→ N(0, G(θ0)).

(iii) supθ∈N

∥∥∥(NT )−1
∑N

i=1
dgi(θ)
dθ′ −H(θ)

∥∥∥ p→ 0 where H(θ) = E(T−1 dgi(θ)
dθ′ ).

(iv) H(θ0) is nonsingular.

3Below, if T →∞, then replace G(θ0) and H(θ) by limT→∞G(θ0) and limT→∞H(θ).
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Theorem 2 Suppose that assumptions A and B hold. Then the large N, fixed T asymp-

totic distribution of the FDMLE for θ in (1) is given by

√
N(θ̂FDMLE − θ0)

d→ N(0, T−1H(θ0)−1G(θ0)H(θ0)−1). (8)

The result follows from theorem 3.2 in NMcF. θ̂FDMLE is consistent by assumption A.

Note that the vecSi(θ0) are i.i.d. with finite second moments because all its elements lie

in [−1, 1]. Hence if Φi does not depend on Wi, then assumption B(ii) is clearly satisfied.

H(θ) is continuous at θ0 because of assumption B(i). In appendix A we show that

H(θ0) = −T−1E{Fi(θ0)[I − (T − 1)(vecSi(θ0)(vecSi(θ0))′)]F ′i (θ0)}.

Theorem 3 Suppose that assumptions A and B hold and that the number of observations

that are available to estimate each element of θ grows at rate T . Then the joint N, T

asymptotic distributions of the FDMLE for θ and σ2
i , i = 1, . . . , N , in (1) are given by

√
NT (θ̂FDMLE − θ0)

d→ N(0, lim
T→∞

(H(θ0)−1G(θ0)H(θ0)−1)) and
√
T (σ̂2

i,FDMLE − σ2
i )

d→ N(0, Asyvar(σ̂2
i,FDMLE)), i = 1, . . . , N, (9)

where limT→∞H(θ0) = limT→∞−T−1(dvecΦi
dθ′ |θ0)

′([Φi(θ)]
−1 ⊗ [Φi(θ)]

−1)(dvecΦi
dθ′ |θ0). Fur-

thermore, if σ−1
i (Φ(Wi, θ0))−1/2Dyi ∼ N(0, I) for i = 1, . . . , N, then limT→∞G(θ0) =

limT→∞−2H(θ0), θ̂FDMLE is asymptotically effi cient and Asyvar(σ̂
2
i,FDMLE) = 2σ4

i .

The first result follows again from theorem 3.2 in NMcF. Note that plimT→∞σ̂
2
i,FDMLE =

σ2
i . Note also that theorem 3 rules out period-specific parameters in Vi(θ). Relaxing

this assumption is possible but affects the rate of convergence of the FDMLE for the

period-specific parameters. For instance, consider the following example: σ2
iVi(θ0) =

σ2
i diag(λ2

1, λ
2
2, ..., λ

2
T−1, 1). Then

√
T (σ̂2

i,FDMLE − σ2
i )

d→ N(0, Asyvar(σ̂2
i,FDMLE)), i =

1, . . . , N, and
√
N(λ̂

2

t,FDMLE − λ2
t )

d→ N(0, Asyvar(λ̂
2

t,FDMLE)), t = 1, . . . , T − 1, and

if εi ∼ N(0, σ2
iVi(θ0)) for i = 1, . . . , N, Asyvar(λ̂

2

t,FDMLE) = 2λ4
t . If we estimate a

two-way heteroskedastic panel AR(1) model, so that s2
iVi,k1,k2(θ) = s2

i l
2
min(k1,k2)r

|k1−k2|,

k1, k2 = 1, ..., T, with lT = 1 and |ρ| < 1, then under time series homoskedasticity we

have
√
NT (ρ̂FDMLE − ρ)

d→ N(0, 1 − ρ2) just as in the fully homoskedastic case (cf.

Kruiniger, 2008, and Bai, 2013).
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We conjecture that if the values of σ2
i , 1, ..., N , were known, σ−1

i (Vi(θ0))−1/2εi ∼
N(0, I) and T were fixed, then the corresponding FDMLE would be an asymptotically

effi cient Fixed Effects estimator for θ0, although it would not attain the generalized

Cramér-Rao lowerbound of Neyman and Scott (1948) or the Fisher information bound

(cf. Kruiniger, 2008)).

3 ML estimation under general heteroskedasticity

Consider the following simplified model with completely unrestricted variance parameters:

yi = εi ∼ N(0,ΓiV Γi), i = 1, ..., N, (10)

where Γi = diag(σi,1, ..., σi,T ). For convenience, let T = 2. The results that we obtain for

this model can be generalized to cases where T > 2. W.l.o.g.we parametrize V as

V =

[
1 ρ
ρ 1

]
. (11)

Let us define

Σi ≡
[

σ2
i,1 ρσi,1σi,2

ρσi,1σi,2 σ2
i,2

]
, and Xi ≡

[
y2
i,1 yi,1yi,2

yi,1yi,2 y2
i,2

]
. (12)

The likelihood equations for the σi,t in model (10), tr(
dΣ−1i
dσi,t

(Σi−Xi)) = 0, i = 1, ..., N,

t = 1, 2 can be rewritten as ρ2(1− Xi,12
ρσi,1σi,2

) = 1−Xi,tt
σ2i,t
. It follows thatXi,11/σ

2
i,1 = Xi,22/σ

2
i,2

and

σ̂2
i,t(ρ) ≡ (1− ρRi)

Xi,tt

(1− ρ2)
= σ2

i,t, (13)

where Ri ≡ Xi,12/
√
Xi,11Xi,22. Using these results we can simplify the likelihood equation

for ρ,
∑N

i=1 tr(
dΣ−1i
dρ
× (Σi −Xi)) = 0. We find that

ρ = N−1
N∑
i=1

(
Xi,12/

√
σ2
i,1σ

2
i,2

)
. (14)

Replacing the σ2
i,t in (14) by σ̂

2
i,t(ρ), we obtain an equation that defines the ML estimator

8



ρ̂ for ρ

ρ̂ = N−1
N∑
i=1

(
Ri

(1− ρ̂2)

(1− ρ̂Ri)

)
. (15)

Since R2
i = 1, it is easily seen that (1− ρ̂2)/(1− ρ̂Ri) = 1 + ρ̂Ri. Condition (15) therefore

implies that N−1
∑N

i=1Ri = 0 which in most cases is not true. We conclude that the ML

estimator for the common correlation parameter ρ is no longer consistent if the variance

parameters are left completely unrestricted. The inconsistency of ρ̂ is due to the incidental

parameters σ2
i,t. If in (14) we would replace σ

2
i,t by σ̃

2
i,t(ρ) = (1 − ρ(N−1

∑N
i=1 Ri))

Xi,tt
(1−ρ2)

and solve for ρ, we would obtain the solution ρ̃ = N−1
∑N

i=1 Ri, which is a consistent

estimator for ρ. Note that σ̃2
i,t(ρ̃) = Xi,tt.

4 ML estimation of nonstationary dynamic panel data

models with cross-sectional heteroskedasticity

4.1 The panel AR(1) model

In this section we will consider ML estimation of versions of the following panel AR(1)

model:
yi,t = ρyi,t−1 + ηi + εi,t, where ηi = (1− ρ)µi, (16)

for i = 1, ..., N and t = 1, ..., T. We assume that |ρ| < 1.4

The vectors of idiosyncratic errors εi = (εi,1 ... εi,T )′ are independently distributed

across individuals and satisfy the following Standard Assumptions, SAk, for k = 2 or

k = 4:
E(εi,t) = 0 and E |εi,t|k+ς <∞ for i = 1, ..., N and t = 1, ..., T, (17)

where ς ≥ 0 is an arbitrarily small constant. In the sequel SA2 is denoted by SA.

The individual effects can often be treated as random effects. In this case we make

the following Random Effects Assumptions, REAk, for k = 2 or k = 4:

σ−1
y,i (yi,0 ηi)

′, i = 1, ..., N, are i.i.d. with σ2
y,i = V ar(yi,0), E |yi,0|k+ς <∞, (18)

E(µi) = 0, σ2
µ,i = E(µ2

i ), E |µi|
k+ς <∞, and E(µiyi,0) = σµy,i. (19)

4The results presented below can be extended to |ρ| ≤ 1 but when ρ = 1, the estimators
discussed below will converge at a slower rate, N1/4, and have non-normal limiting distributions
under time-series homoskedasticity (cf. Kruiniger, 2013). Note that the parametrization ηi =
(1− ρ)µi rules out a discontinuity in the data generating process at ρ = 1.
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In addition, we let σ2
η,i = E(η2

i ) and σηy,i = E(ηiyi,0). The assumption E |µi|
k+ς <∞ (for

k = 2 or k = 4) ensures that under covariance stationarity the means of the data, i.e.,

ηi/(1 − ρ) = µi, i = 1, ..., N , are drawn from a distribution with a finite variance rather

than a variance that tends to infinity when ρ approaches one.

Unlike the RE ML estimators, the FE ML estimators only exploit data in first differ-

ences. This reflects the fact that the FE approach entails making minimal assumptions

about the µi and the yi,0. In the FE case we assume that vi,0 ≡ yi,0 − µi, i = 1, ..., N ,

satisfy a Fixed Effects Assumption, FEAk, for k = 2 or k = 4 (cf. Kruiniger, 2001):

σ−1
v0,i
vi,0, i = 1, ..., N, are i.i.d. with σ2

v0,i
= V ar(vi,0) and E |vi,0|k+ς <∞. (20)

The i.i.d. assumption in (20) is not in the spirit of FE and is only made for presentational

convenience. It can be relaxed. Below we sometimes allow σ−1
v0,i
vi,0, i = 1, ..., N to be

i.h.d.

Suppose that yi,0 depends on µi in a linear fashion, i.e. yi,0 = E(yi,0) + α1µi + εi,0

with E(εi,0) = 0, and µi ⊥ εi,0. In the important case that α1 = 1, we have µi ⊥ vi,0

and FEAk does not impose any restrictions on µi and yi,0 other than those on yi,0 − µi.
However when α1 6= 1, FEAk implies restrictions on the µi themselves.

In the sequel REA2 and FEA2 are denoted by REA and FEA, respectively.

For both the RE and the FE versions of the model we assume that

εi,s ⊥ εi,t for i = 1, ..., N and t 6= s. (21)

Furthermore, for the RE versions of the model we assume that

εi,t ⊥ yi,0 and εi,t ⊥ ηi for i = 1, ..., N and t = 1, ..., T, (22)

whereas in the FE case we assume that

vi,0 ⊥ εi,t for i = 1, ..., N and t = 1, ..., T. (23)

Finally, most of our discussion below is related to versions of the model that allow for

heteroskedasticity of the εi,t in both dimensions that satisfies the following equation:

σ2
i,t = E(ε2

i,t) = σ2
iλ

2
t <∞, for i = 1, ..., N and t = 1, ..., T , with λ1 = 1. (24)
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In some cases we make the stronger assumption of Time Series Homoskedasticity

(TSH):
E(ε2

i,t) = σ2
i <∞, for i = 1, ..., N and t = 1, ..., T . (25)

We may also assume Constant Variance Ratios (CVR), i.e., in the RE versions we may

assume

σ2
y,iσ

−2
i = σ2

y, σ
2
η,iσ

−2
i = σ2

η and σηy,iσ
−2
i = σηy, for i = 1, ..., N, (26)

while in the FE versions of the model we may assume

σ2
v0,i
σ−2
i = σ2

v0
, for i = 1, ..., N, (27)

so that the models have only N incidental variance parameters σ2
i , i = 1, ..., N.

4.2 ML estimators

Direct application of the Maximum Likelihood method to the nonstationary panel AR(1)

model with RE will generally yield an inconsistent estimator for ρ due to correlation

between the individual effects (ηi) and the regressors (yi,t−1, t = 1, ..., T ). However, a

consistent ML estimator for ρ can be obtained after reformulating the model. Following

Chamberlain (1980) we can decompose the ηi into a term that depends on the initial

observation, yi,0, and a term that does not: 5

ηi = π(1− ρ)yi,0 + (1− ρ)vi, i = 1, ..., N, (28)

where vi is a new individual effect with E(vi) = 0, π(1− ρ) = plimN→∞
∑N

i=1(σ−2
y,iηiyi,0/∑N

i=1(σ−2
y,iyi,0)) and plimN→∞N

−1
∑N

i=1(σ−2
y,iyi,0vi) = 0.

Let yi = (yi,1 ... yi,T )′ and yi,−1 = (yi,0 ... yi,T−1)′ and let ι denote a vector of ones.

Then using the decomposition of the ‘correlated effects’ηi given in (28), we can rewrite

the panel AR(1) model with RE as

yi = ρyi,−1 + π(1− ρ)yi,0ι+ ui, where (29)

ui = (1− ρ)viι+ εi with E(εiε
′
i) = σ2

iΨ(ζ) = σ2
i diag(1, λ2

2, λ
2
3, ..., λ

2
T ).

5For the sake of a simple exposition we assume that E(yi,0) = 0. A situation where E(yi,0) 6=
0 can be handled by including an intercept term in (28) and in (29).
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Let plimN→∞N
−1
∑N

i=1(v2
i /σ

2
i ) = σ2

v and Φ = (1−ρ)2σ2
vιι
′+Ψ(ζ). Then it is easily ver-

ified that E(yi,0ι
′Φ−1ui) = 0 and E(y′i,−1Φ−1ui) = 0, cf. Blundell and Bond (1998). Note

that when assumption CVR, i.e., (26) holds, then E(v2
i /σ

2
i ) = σ2

v for all i ∈ {1, ..., N}.
After adding the assumption that the scaled error components are i.i.d. and normal, i.e.,

σ−1
i ui ∼ i.i.d. N(0,Φ), application of the ML method to (29) yields the (Weighted) RE

ML Estimator for ρ, π, σ2
v, ζ = (λ2

2 ... λ
2
T )′ and σ2

i , i = 1, ..., N.

When calculating the REMLE it is convenient to use the reparameterization π̃ =

π(1 − ρ) and σ̃2
v = (1 − ρ)2σ2

v. Let θ0 = (ρ, π̃, σ̃2
v, ζ
′)′. Then the log-likelihood function

for the above model will be denoted by lRE(θ, s2
1, ..., s

2
N) =

∑N
i=1 lRE,i(θ, s

2
i ) where θ =

(r, p̃, s̃2
v, z
′)′ and lRE,i(θ, s2

i ) = lRE,i(y
+
i ; θ, s2

i ) is the contribution to lRE(θ, s2
1, ..., s

2
N) from

‘individual’i. The REMLE for θ0 will be denoted by θ̂RE or simply by θ̂.

Both Hsiao et al. (2002) and Kruiniger (2001) have derived the FEMLE, respectively,

for the model with σ2
i = σ2, i = 1, ..., N . Following the exposition in Kruiniger (2001),

one can obtain the (Weighted) FE MLE for the model with CS heteroskedasticity by

replacing µi in (16) by yi,0 + vi, and imposing that the σ−1
i (vi ε

′
i) are i.i.d. and normal

with vi ⊥ εi.6 This amounts to imposing the restriction π = 1 on the model in (29) and

leads to the following formulation of the nonstationary panel AR(1) model with FE:

yi = ρyi,−1 + (1− ρ)yi,0ι+ ui, where (30)

ui = (1− ρ)viι+ εi with E(εiε
′
i) = σ2

iΨ(ζ),

and where vi = −vi,0 satisfy assumption (23). After imposing σ−1
i ui ∼ i.i.d. N(0,Φ) with

Φ = σ̃2
vιι
′ + Ψ(ζ), application of the ML method to (30) yields the (Weighted) FE ML

Estimator for ρ, σ̃2
v, ζ = (λ2

2 ... λ
2
T )′ and σ2

i , i = 1, ..., N. The log-likelihood function for

the above model will be denoted by lFE(θ, s2
1, ..., s

2
N) where in this case θ = (r, s̃2

v, z
′)′.

Let σ̃2
i (θ) = T−1tr([Φ(θ)]−1ui(θ)u

′
i(θ)) with ui(θ) = yi − ryi,−1 − p̃yi,0ι and let σ̃2

i =

σ̃2
i (θ0), i = 1, ..., N. Also let Θ ⊂ (−1, 1) × R(dim(θ)−T−1) × [a, b]T be a compact set with

b > a > 0 and let σ2
i ∈ [a, b] ∀i ∈ {1, ..., N}. To derive the asymptotic properties of the

RE and FE (Quasi) MLEs when σ−1
i ui, i = 1, ..., N, are i.i.d., we may use

Assumption C:

6For the sake of a simple exposition we assume that E(vi) = 0. A situation where E(vi) 6= 0
can be handled by including an intercept term in (30).
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(i) σ−1
i εi, i = 1, ..., N, are i.i.d., SA and REA or FEA with ς = 0, E(vi) = 0, (21),

(22) or (23), (24) and (26) or (27) (ii) vi ⊥ yi,0 (iii) if T is fixed: (a) [(σ2
iΦ(θ0))−1/2ui]t

are symmetrically i.i.d. ∀i, t and (b) E(supθ∈Θ(σi/σ̃i(θ))) <∞ (iv) if T →∞: SA4
with ς = 0.

Note that assumption C(i) imposes CVR but allows the ui, i = 1, ..., N, to be non-

Gaussian. Assumptions C(ii) and C(iii-b) (and C′(ii) and D(b) below) are not needed

for the FE(Q)MLE. Assumption C(iii) involves a strong assumption about the distri-

bution of the ui. However, it is satisfied when, for instance, ui ∼ N(0, σ2
iΦ(θ0)) for

i = 1, . . . , N and T ≥ 3. In that case (σ2
i /σ̃

2
i ) follows an inverted χ2 distribution

with T degrees of freedom and E(σ2
i /σ̃

2
i ) = (T − 2)−1 so that E(σi/σ̃i) < ∞. It fol-

lows from assumption C that when T is fixed, E(|yi,0ι′(Φ(θ))−1ui(θ)/σ̃
2
i (θ)|) ≤ T×

(max1≤k≤T |(ι′(Φ(θ))−1/2)k|)E(σi/σ̃i(θ))E(|yi,0/σi|) < ∞ and E(σ̃−2
i yi,0ι

′(Φ(θ0))−1ui) =

0. Furthermore, E(σ̃−2
i (Φ(θ0))−1/2uiu

′
i(Φ(θ0))−1/2) = I. We have the following result:

Theorem 4 Suppose that θ0 ∈ Θ and that assumption C holds. Then the RE(Q)MLE

and FE(Q)MLE for θ0 in the model in (29) and the model in (30), respectively, are

consistent when N →∞ irrespective of whether T is fixed or T →∞.

The results in theorem 4 still hold when assumption TSH holds and has been imposed

on the models in (29) and (30). In this case θ0 does not include ζ.

When T is fixed or TSH holds and has been imposed on the models, the results follow

by applying theorems 2.1 and 2.6 in NMcF; otherwise, the proof of theorem 4 partly

follows the proof in Bai (2013), which, instead of SA, uses the stronger assumption SA4,

i.e. C(iv). Note that plimT→∞σ̂
2
i,REQMLE = σ2

i and plimT→∞σ̂
2
i,FEQMLE = σ2

i .

When TSH holds, assumption C(iii-a) can be replaced by the assumption that the

elements of εi are symmetrically i.i.d. conditional on vi and vi is symmetrically distributed

for i = 1, . . . , N.

When σ−1
i ui, i = 1, ..., N, are i.h.d. and N, T →∞, a version of theorem 4 holds under

Assumption C′:

(i) εi, i = 1, ..., N, are i.h.d., SA4 with ς > 0 and (21) (ii) in case of RE: REA

with ς > 0, E(vi) = 0, (22) and vi ⊥ yi,0 (iii) ∃ pseudo-true values θ0 ∈ Θ and

σ2
i ∈ [a, b], i = 1, ..., N such that ρ = ρ, π = π̃, plimT→∞σ̃

2
i (θ0) = σ2

i , i = 1, ..., N,
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plimN,T→∞N
−1
∑N

i=1

(
εiε
′
i/σ̃

2
i (θ0)

)
= Ψ(θ0), plimN,T→∞N

−1
∑N

i=1

(
εivi/σ̃

2
i (θ0)

)
= 0

and plimN,T→∞N
−1
∑N

i=1

(
v2
i /σ̃

2
i (θ0)

)
= σ̃

2

v.

Assumption C′(ii) corresponds to a RE formulation of the model but is actually not

required for proving large N, T consistency of the REQMLE; assumptions C′(i) and C′(iii)

suffi ce for this purpose, cf. Bai (2013), in particular p.287 and his third lemma on p.291.

Assumption C′ would be useful when the assumption of constant variance ratios,

(26) or (27), does not hold, e.g. when the σ−1
i εi, i = 1, ..., N, are i.i.d. but σ−1

i vi,

i = 1, ..., N, are i.h.d. Assumption C′ does not require (24), i.e., E(ε2
i,t) = σ2

iλ
2
t either.

Also, we can have E(ε2
i,1) 6= σ2

i . However, assumption C
′(iii) implies that ζ = N−1

∑N
i=1 ζ i

where diag((E(ε2
i,1)/σ2

i ), ζ i) ≡ V ar(εi)/σ
2
i , i = 1, ..., N, and limT→∞T

−1ι′diag(ζ)−1ζ i = 1,

i = 1, ..., N. The latter follows from plimT→∞σ̃
2
i (θ0) = σ2

i , i = 1, ..., N. C′(iii) also implies

that limN→∞N
−1
∑N

i=1(E(ε2
i,1)/σ2

i ) = 1. Thus C′(iii) places non-trivial restrictions on

the E(ε2
i,t) but very mild restrictions on the vi. The restrictions on E(ε2

i,t) hold when, for

instance, E(ε2
i,t) = σ2

iλ
2
t exp(ωi,t) where the ωi,t are i.i.d. with E(exp(ωi,t)) = 1. In this

case σ2
i = σ2

i and ζt = λ2
t . We have the following result:

Theorem 5 Suppose that assumption C ′ holds. Then the REQMLE and FEQMLE for

ρ in the models in (29) and (30), respectively, are consistent when N →∞ and T →∞.

The proof of theorem 5 partly follows Bai (2013). Before we discuss the limiting

distributions of the (Q)MLEs, we add the following assumptions:

Assumption D:

If T is fixed, then (a) SA4 and REA4 or FEA4 with ς = 0 and (b) E((σi/σ̃i)
2) <∞.

We need REA4 or FEA4 to establish the asymptotic distributional properties of

the QMLEs when T is fixed, cf. Kruiniger (2013), but not when both N → ∞ and

T → ∞, cf. Bai (2013). Letting G(θ) = N−1T−1 ∂l(θ,σ̃
2
1,...,σ̃

2
N )

∂θ

∂l(θ,σ̃21,...,σ̃
2
N )

∂θ′ and H(θ) =

N−1T−1 ∂
2l(θ,σ̃21,...,σ̃

2
N )

∂θ∂θ′ , we have:

Theorem 6 Suppose that θ0 ∈ int(Θ) and that assumptions C and D hold. Then the

large N, fixed T asymptotic distribution of the RE(Q)MLE and FE(Q)MLE for θ0 are

given by

√
N(θ̂QMLE − θ0)

d→ N(0, plimN→∞(T−1H(θ0)−1G(θ0)H(θ0)−1)). (31)
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The results in theorem 6 follow from theorem 3.4 in NMcF. When ρ = 1, the limiting

distributions of the QMLEs are non-standard, cf. Kruiniger (2013).

Let λ2
i,t = σ2

i,t/σ
2
i , i = 1, ..., N, t = 1, . . . , T, λ2

1 = 1 and λ2
t = N−1

∑N
i=1 λ

2
i,t, t =

2, . . . , T . Also let λ2
1 = 1. Then we have the following result for the REQMLE:

Theorem 7 Suppose that θ0 ∈ int(Θ) and that assumption C ′ holds. Let ωT = T−1×∑T
t=1 λ

−2
t , ω = limT→∞ ωT , γ = limT→∞ T

−1
∑T

t=2(λ−2
t (λ2

t−1 + ρ2λ2
t−2 + ...+ ρ2(t−2))) and

γ = limN,T→∞(NT )−1
∑N

i=1

∑T
t=2(λ−4

t λ2
i,t(λ

2
i,t−1 +ρ2λ2

i,t−2 +...+ρ2(t−2)λ2
i,1)). If N, T →∞,

T/N2 → 0, N/T 2 → 0 and appropriate Lindeberg conditions hold, then

√
NT (ρ̂REQMLE − ρ)

d→ N
(
0, γ/γ2

)
, (32)

√
NT (̂̃πREQMLE − π̃)

d→ N (0, Asyvar(π̂REQMLE)) ,
√
NT (̂̃σ2

v,REQMLE − σ̃2
v − (

1

N
+

1

T
)̃b)

d→ N(0, Asyvar(̂̃σ2

v,REQMLE)) for some b̃ 6= 0,

and
√
N(λ̂

2

t,REQMLE − λ2
t )

d→ N(0, Asyvar(λ̂
2

t,REQMLE)), t = 2, . . . , T, and
√
T (σ̂2

i,REQMLE − σ2
i )

d→ N(0, Asyvar(σ̂2
i,REQMLE)), i = 1, . . . , N. (33)

Furthermore, if instead of assumption C ′, assumption C holds, then λ2
i,t = λ2

t = λ2
t ,

t = 1, . . . , T and

√
NT

 ρ̂REQMLE − ρ̂̃σ2

v,REQMLE − σ̃2
v − ( 1

N
+ 1
T

)b

 d→ N

 0

0

 ,
 1/γ − 2σ̃2v

γ(1−ρ)

− 2σ̃2v
γ(1−ρ)

4σ̃4v
γ(1−ρ)2

+ 4σ̃2v
ω

 ,

(34)

where b = −2(TωT )−1
∑T

t=1(λ−4
t νt)(N

−1
∑N

i=1(σ−1
i vi)) with νt = E(σ−3

i ε3
i,t). If in addi-

tion ui ∼ N(0, σ2
iΦ(θ0)) for i = 1, . . . , N, then Asyvar(λ̂

2

t,REQMLE) = 2λ4
t , t = 2, . . . , T,

and Asyvar(σ̂2
i,REQMLE) = 2σ4

i , i = 1, . . . , N, and ρ̂ is a joint N, T asymptotically ef-

ficient estimator for ρ. If assumption TSH also holds and TSH has been imposed on

the model, plimN,T→∞G(θ0) = −plimN,T→∞H(θ0) = −plimN,T→∞N
−1T−1 ∂

2l(θ0,σ2i )

∂θ∂θ′ and
√
NT (θ̂REQMLE − θ0)

d→ N(0, plimN→∞(G(θ0))−1).

A similar theorem can be stated for the FEQMLE. Under random effects with E(vi) =

0, b is actually negligible and ( 1
N

+ 1
T

)b can be omitted from the distribution of ̂̃σ2

v,REQMLE.
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We only require N/T 3 → 0 for the joint N, T limiting distribution of ρ̂REQMLE to

have the simple form in Theorem 7, cf. Bai (2013). The condition T/N2 → 0 is used

only for the joint N, T limiting distribution of ̂̃σ2

v,REQMLE, while N/T
2 → 0 is used for

the limiting distributions of λ̂
2

t,REQMLE, t = 2, . . . , T, cf. Bai (2013).

When assumptions C and TSH hold and TSH has been imposed on the model, the

results in theorem 7 follow from theorem 3.2 or 3.4 in NMcF; otherwise we can follow

Bai (2013). Note that if assumption TSH holds, γ = γ = (1− ρ2)−1.

One can obtain a consistent estimator for the asymptotic variance of the weighted

QMLE for θ when E(ε2
i,t) = σ2

iλ
2
t (or for ρ if E(ε2

i,t) 6= σ2
iλ

2
t ) by using a subsampling

method. Hayakawa and Pesaran (2012) derive a consistent estimator for the large N, fixed

T asymptotic variance of the unweighted FEMLE for θ when E(uiu
′
i) = σ2

i (σ̃
2
vιι
′ + I).

When assumptions C or C′(iii) do not hold, one may still be able to obtain a joint N, T

consistent estimator for ρ that is asymptotically more effi cient than the unweighted QMLE

for ρ by following a two-step procedure: let ζ = (λ2
1, λ

2
2 ... λ

2
T )′, redefine θ0 = (ρ, π̃, σ̃2

v, ζ
′
)′

and Φ(θ0) = σ̃2
vιι
′ + diag(ζ) accordingly, and use the unweighted Quasi MLE for θ,

say θ̂U , to compute the estimates σ̃
2
i (θ̂U) = T−1tr([Φ(θ̂U)]−1ui(θ̂U)u′i(θ̂U)) for the σ2

i .

Next replace s2
i in the redefined weighted log-likelihood function l(θ, s

2
1, ..., s

2
N) by σ̃2

i (θ̂U)

∀i ∈ {1, ..., N} and maximize the resulting function w.r.t. θ to obtain the weighted Quasi
MLE for ρ (and π). Under appropriate (moment) conditions joint N, T consistency of this

weighted QMLE for ρ can be shown similarly as joint N, T consistency of the unweighted

QMLE for ρ by partly following Bai (2013).

Let σ̃2
i,t = w2

i σ
2
i,t and σ̄

2
w,t = N−1

∑N
i=1 σ̃

2
i,t, i = 1, ..., N , t = 1, . . . , T, where the weights

w2
i may be chosen as e.g. w

2
i = σ̃−2

i (θ̂U), i = 1, ..., N. Then we have the following result

on the joint N, T distribution of the weighted REQMLE for ρ, ρ̂REWQMLE:

Theorem 8 Suppose that θ0 ∈ int(Θ) and that assumptions C ′(i) and C ′(ii) hold. Let

w2
i = σ̃−2

i (θ̂U), i = 1, ..., N, γ̃ = limT→∞ T
−1
∑T

t=2(σ̄−2
w,t(σ̄

2
w,t−1+ρ2σ̄2

w,t−2+...+ρ2(t−2)σ̄2
w,1))

and γ̃ = limN,T→∞(NT )−1
∑N

i=1

∑T
t=2(σ̄−4

w,tσ̃
2
i,t(σ̃

2
i,t−1+ρ2σ̃2

i,t−2+...+ρ2(t−2)σ̃2
i,1)). If N, T →

∞, N/T 3 → 0, ρ̂REWQMLE is consistent and appropriate Lindeberg conditions are satis-

fied, then
√
NT (ρ̂REWQMLE − ρ)

d→ N
(

0, γ̃/(γ̃)2
)
.

A similar result holds for other choices of w2
i for which ρ̂REWQMLE is consistent and ap-

propriate Lindeberg conditions are satisfied. The unweighted REQMLE for ρ, ρ̂REUQMLE,

is obtained for w2
i = 1, i = 1, ..., N.
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When E(ε2
i,t) = σ2

iλ
2
t , N, T → ∞, N/T 3 → 0 and appropriate Lindeberg condi-

tions hold, then Theorem 8 implies that Asyvar(ρ̂REWQMLE) = (γ̃)−1(N−1
∑N

i=1w
4
i σ

4
i )×

(N−1
∑N

i=1w
2
i σ

2
i )
−2 and henceAsyvar(ρ̂REUQMLE)/Asyvar(ρ̂REQMLE) = (N−1

∑N
i=1 σ

4
i )×

(N−1
∑N

i=1 σ
2
i )
−2 > 1 if σ2

i 6= σ2
j for some i, j ∈ {1, ..., N}. In practice, if it turns out that

the weighted QMLE for ρ is not more effi cient than the unweighted QMLE for ρ, then

one can simply ignore the weighted QMLE.

By repeating the second step of the two-step weighted QMLE described above one can

obtain an iterated weighted QMLE. At each iteration the weights σ̃2
i (θ̂) = T−1tr([Φ(θ̂)]−1×

ui(θ̂)u
′
i(θ̂)), 1, ..., N, are updated by substituting the latest estimate of θ for θ̂ in σ̃2

i (θ̂),

1, ..., N. Instead of σ̃2
i (θ̂), one may use normalised weights ζ1σ̃

2
i (θ̂), 1, ..., N. This is equiv-

alent to dividing the variance parameters by ζ1. If the σ
2
i,t = E(ε2

i,t) satisfy (24) or C
′(iii),

then the iterated estimates of ζ1 will converge to 1 when using the normalised weights.

Finally, we describe a hybrid QMLE that is based on an objective function that nests

the weighted likelihood function but is also a quasi likelihood function. Recall that z = (l22

... l2T )′, Φ(s̃2
v, z) = s̃2

vιι
′ + Ψ(z) and ui(θ) = yi − ryi,−1 − p̃yi,0ι. Let z̄ = (l̄21, l̄

2
2 ... l̄

2
T )′,

Φ(s̄2
v, z̄) = s̄2

vιι
′+ diag(z̄) and redefine θ = (r, p̃, s̄2

v, s̃
2
v, z̄
′, z′)′. Then the ‘hybrid’objective

function is l(θ) =
∑N

i=1 lRE,i(θ) with

lRE,i(θ) = −T
2

ln(2π)− 1

2
ln
∣∣Φ(s̄2

v, z̄)
∣∣− T

2
ln σ̃2

i (θ)−
1

2σ̃2
i (θ)

(ui(θ))
′(Φ(s̄2

v, z̄))−1ui(θ),

where σ̃2
i (θ) = T−1tr([Φ(s̃2

v, z)]
−1ui(θ)u

′
i(θ)).

We make the following remarks. The hybrid QMLE for ρ will be joint N, T asymptoti-

cally equivalent to the weighted QMLE for ρ when the σ2
i,t = E(ε2

i,t) satisfy (24) or C
′(iii).

In that case, one would expect that the estimates for ζ−(1, ζ)′ are not significantly differ-

ent from zero. The hybrid QMLE for ρ will be large N, fixed T asymptotically equivalent

to the weighted QMLE for ρ when assumption C holds, in particular, when (24) and

either (26) or (27) are satisfied. However, unlike the weighted QMLE, the hybrid QMLE

will generally still be consistent when the σ2
i,t = E(ε2

i,t) do not satisfy (24) or C
′(iii). In

that case the hybrid QMLE, like the iterated QMLE, may still be more effi cient than the

unweighted QMLE. The hybrid QMLE does not require iteration and is also more flexible

than the iterated QMLE. For instance, it is possible that ζ 6= a(1, ζ)′ for all a ∈ R+.
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4.3 A Panel GARCH(1,1) model

In this section we briefly discuss ML estimation of panel GARCH models. Such models

have been considered before by Engle and Mezrich (1996), Bauwens and Rombouts (2007)

and Pakel, Shephard and Sheppard (2011). Similarly to Pakel et al. (2011) we model the

conditional variance of the idiosyncratic error, i.e., E(ε2
i,t|It−1) ≡ hi,t, where It−1 is a set

containing information up to period t− 1, as

hi,t = σ2
i (1− α1 − β1) + α1ε

2
i,t−1 + β1hi,t−1

with α1 ≥ 0, β1 ≥ 0 and α1 + β1 < 1. This model for E(ε2
i,t|It−1) implies that E(ε2

i,t) =

σ2
i τ

2
t with τ

2
t = 1, t = 1, ..., T.

When N is large but T is fixed, one cannot consistently estimate the GARCH parame-

ters α1, β1 and σ
2
i , i = 1, ..., N, due to the combination of the presence of the incidental

variance parameters and the fact that the hi,t (and the ε2
i,t) i = 1, ..., N, t = 0, ..., T−1 are

unobserved. However, when T grows large and α1 + β1 < 1, the effect of the choices for

the values of hi,0 i = 1, ..., N on the estimator becomes negligible. Furthermore, in case

the mean equations of the panel model contain incidental parameters, ηi, i = 1, ..., N (cf.

the panel AR(1) model), one can obtain consistent estimates of such parameters when T

grows large. This is important because hi,t depends on the ηi through the ε
2
i,t−1 terms.

Thus when N, T → ∞, one can consistently estimate all the model parameters. In
this case one can take the following approach to ML estimation of the model. First

estimate the σ2
i (and the ηi if present) using a likelihood function that ignores the GARCH

specification but uses the unconditional variances, i.e., the σ2
i , instead. Then in the next

step maximize the likelihood function that includes the GARCH specification using the

σ̂2
i and the η̂i as starting values for the σ

2
i and the ηi. Note that the m-profile composite

likelihood estimator of Pakel et al. (2011) also uses a similar first step but in the second

step keeps the values of the σ2
i fixed at their initial estimates. Hence their estimator will

generally be less effi cient than the standard ML estimator.
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5 GMMestimation under multiplicative cross-sectional

heteroskedasticity

5.1 Static panel data models

Suppose that Dyi ∼ N(0, σ2
iDΦ(θ)D′). Note that this model is a simplified version of the

model from section 2 with Φi(θ) = Φ(θ), i = 1, ..., N, and in particular that Φ(θ) does

not depend on Wi. Let θ̂FD = θ̂FDMLE and σ̃
2
i (θ) = 1

T−1
tr([Φ(θ)]−1Zi), i = 1, ..., N, (cf.

(6)). The FDMLE for θ is equivalent to a GMM estimator that exploits the moment

conditions in

E[([Φ(θ̂FD)]−1/2 ⊗ [Φ(θ̂FD)]−1/2)vec(Φ(θ)− Zi/σ̃2
i (θ̂FD))] = 0 (35)

and uses the identity matrix as weight matrix. Clearly, θ̂FD is also equivalent to a GMM

estimator that exploits the moment conditions in

E[vech([Φ(θ̂FD)]−1/2[Φ(θ)− Zi/σ̃2
i (θ̂FD)][Φ(θ̂FD)]−1/2)] = 0. (36)

Note that Si(θ) = [Φ(θ)]−1/2Zi[Φ(θ)]−1/2/((T − 1)σ̃2
i (θ)). An optimal weight matrix for

(36) is [T 2Cov(vech(Si(θ0)))]−1, which is a diagonal matrix. Using well known results

about the moments of the Dirichlet distribution, which is a multivariate generalisation of

the Beta distribution, see Johnson and Kotz (1972), it can be shown that the diagonal

elements of Cov(vech(Si(θ0))) that correspond to the diagonal elements of Si(θ0) are equal

to 2(T − 2)/((T − 1)(T 2 − 1)) while its other diagonal elements are equal to 1/(T 2 − 1).

It follows that the optimal weight matrix for (35) is only proportional to the identity

matrix when T → ∞ but not when T is fixed. We conclude that when T is fixed the

GMM estimator that exploits (36) and uses [T 2Cov(vech(Si(θ0)))]−1 as weight matrix is

asymptotically more effi cient than θ̂FD. The fixed T , large N asymptotic distribution of

this Individually Weighted (IW) GMM estimator is given by:

√
N(θ̂IWGMM−θ)

d→ N(0, (E(
dvechSi(θ)

dθ′
|θ0)′Cov(vechSi(θ0))−1E(

dvechSi(θ)

dθ′
|θ0))−1).

(37)
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The effi ciency loss of the FDMLE is related to the presence of incidental variance para-

meters.

Note that the FDMLE for θ is also large N asymptotically equivalent to a GMM

estimator for θ that exploits

E[vech(Φ(θ)−N−1
∑N

i=1(Zi/s
2
i ))] = 0, (38)

E[s2
i − (T − 1)−1tr([Φ(θ)]−1Zi)], i = 1, ..., N.

A notable feature of the moment conditions in (35), (36) and (38) is that the individual

observations Zi = Dyiy
′
iD
′ are weighted by estimates of 1/σ2

i , i = 1, ..., N. This weighting

leads to an estimator that uses i.i.d. data. Furthermore, when there is a considerable

degree of heteroskedasticity in the cross-section dimension, this type of weighting poten-

tially increases the precision of the resulting Optimal GMM estimator substantially as

compared to the precision of the Optimal GMM estimators that are based on

E(σ̃2
i (θ)Φ(θ)− Zi) = 0 (39)

or E(σ2Φ(θ)−Zi) = 0, respectively. On the other hand, the fact that the Zi are weighted

by estimates of 1/σ2
i rather than by the true values of 1/σ2

i , contributes to the variance

of the (Optimal) GMM estimator that exploits (35), (36) or (38). Therefore, when T is

small, the Optimal GMM estimator that exploits (35), (36) or (38) could actually be less

effi cient than the Optimal GMM estimator that exploits (39).

The Individually Weighted GMM estimator that exploits (35), (36) or (38) can be

thought of as a generalization of the Minimum Distance estimators of Chamberlain (1982,

1984).

5.2 Nonstationary panel AR(1) model

We consider GMM estimation of the nonstationary panel AR(1) model in (16) under

assumption C.

Let wi,t(r) = yi,t− ryi,t−1 = ui,t(θ) + p̃yi,0 and let ∆ be the first-difference operator so

that ∆wi,t(r) = wi,t(r)−wi,t−1(r) = ∆ui,t(θ). Ahn & Schmidt (1995) have shown that un-

der assumptions C and REA and CS homoskedasticity a large N , fixed T asymptotically
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effi cient GMM estimator for ρ in (16) exploits the following moment conditions:

E(yi,0∆wi,t) = E(yi,0∆ui,t) = 0, t = 2, ..., T, (40)

E(wi,s∆wi,t) = E(ui,s∆ui,t) = 0, t = 3, ..., T, s = 1, ..., t− 2,

E(wi,T∆wi,t) = E(ui,T∆ui,t) = 0, t = 2, ..., T − 1.

Under the same assumptions and normality the Optimal GMM estimator exploiting (40)

is large N , fixed T asymptotically equivalent to the unweighted REML estimator for ρ in

(16), cf. Kruiniger (2013). When the errors are CS heteroskedastic, theWeighted REMLE

for ρ proposed in section 4 may be more effi cient than these unweighted estimators.

Instead of this Weighted REML estimator, one may use an Individually Weighted GMM

estimator that exploits the following moment conditions:

E(σ̃−2
i (θ̂)yi,0∆wi,t) = 0, t = 2, ..., T, (41)

E(σ̃−2
i (θ̂)wi,s∆wi,t) = 0, t = 3, ..., T, s = 1, ..., t− 2,

E(σ̃−2
i (θ̂)wi,T∆wi,t) = 0, t = 2, ..., T − 1,

where σ̃−2
i (θ) is defined above assumption C and θ̂ is an initial consistent estimator of θ.

The Weighted REMLE for ρ is only large N , fixed T asymptotically effi cient under

normality of the data, whereas the Optimal IW GMM estimator based on (41) will also

be large N , fixed T asymptotically effi cient under non-normality. The Weighted REMLEs

for σ̃2
v, λ

2
2, ..., λ

2
T are largeN , fixed T asymptotically ineffi cient even under normality. The

reasons for the ineffi ciency of these estimators under normality are similar to those given

in section 5.1 for the large N , fixed T asymptotic ineffi ciency of the Weighted FDMLEs

for the parameters in θ and are related to the presence of incidental variance parameters.

Note that like the Weighted REMLE, consistency of the GMM estimator based on (41)

requires symmetry of the distributions of the elements of (Φ(θ0))−1/2ui. An alternative

Individually Weighted GMM estimator for ρ that does not require this assumption is

based on the following moment conditions:

E(σ̃−2
i,−(t−1),−t(θ̂)yi,0∆wi,t) = 0, t = 2, ..., T, (42)

E(σ̃−2
i,−s,−(t−1),−t(θ̂)wi,s∆wi,t) = 0, t = 3, ..., T, s = 1, ..., t− 2,

E(σ̃−2
i,−(t−1),−t,−T (θ̂)wi,T∆wi,t) = 0, t = 2, ..., T − 1,
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where

σ̃2
i,−(t−1),−t(θ) =

1

T − 2
tr([Φ−(t−1),−t(θ)]

−1ui,−(t−1),−t(θ)u
′
i,−(t−1),−t(θ)),

Φ−(t−1),−t(θ) = σ̃2
vιT−3ι

′
T−3 + diag(1, λ2

2, λ
2
3, ..., λ

2
t−2, λ

2
t+1, ..., λ

2
T ),

ui,−(t−1),−t(θ) = (ui,1(θ), ui,2(θ), ..., ui,t−2(θ), ui,t+1(θ), ..., ui,T (θ)),

σ̃−2
i,−(t−1),−t,−T (θ) is defined similarly, and

σ̃2
i,−s,−(t−1),−t(θ) =

1

T − 3
tr([Φ−s,−(t−1),−t(θ)]

−1ui,−s,−(t−1),−t(θ)u
′
i,−s,−(t−1),−t(θ)),

Φ−s,−(t−1),−t(θ) = σ̃2
vιT−3ι

′
T−3 + diag(1, λ2

2, λ
2
3, ..., λ

2
s−1, λ

2
s+1, ..., λ

2
t−2, λ

2
t+1, ..., λ

2
T ),

ui,−s,−(t−1),−t(θ) = (ui,1(θ), ui,2(θ), ..., ui,s−1(θ), ui,s+1(θ), ..., ui,t−2(θ), ui,t+1(θ), ..., ui,T (θ)).

To reduce the computational burden, E(σ̃−2
i,−(t−1),−t(θ̂)yi,0∆wi,t) = 0, t = 2, ..., T, can

be replaced by E(σ̃−2
i,−s,−(t−1),−t(θ̂)yi,0∆wi,t) = 0, t = 2, ..., T, for some s ∈ {1, ..., t− 2}.

6 Monte Carlo results

In this section we compare through Monte Carlo simulations the finite sample properties

of the unweighted RE- and FEQMLE and the weighted RE- and FEQMLE for ρ. We

study how the properties of these estimators are affected if we change (1) the skedastic

properties of the idiosyncratic errors (the εi,t), (2) the distributions of the vi,0 = yi,0 − µi
or (3) in the case of the REQMLEs the ratios of the variances of the error components, i.e.

σ2
µ,i/σ

2
i . We conducted the simulation experiments for (T,N) = (4, 100), (4, 500), (9, 100),

(9, 500) or (24, 100) and ρ = 0.2, 0.5, 0.8 or 0.95.

In all simulation experiments the error components have been drawn from normal

distributions with zero means. We assumed that σ2
µ,i/σ

2
i = 0, 1 or 25. For the variances

of the εi,t we considered three different designs (identified by a Roman number):

I Homoskedasticity of the εi,t: E(ε2
i,t) = σ2 with σ2 = 1.

II CS heteroskedasticity of εi,t: E(ε2
i,t) = σ2

i with σ
2
i ∼ Uniform[0.4, 1.6].

III CS heteroskedasticity of εi,t: E(ε2
i,t) = σ2

i with σ
2
i ∼ χ2(1).

IV CS heteroskedasticity of εi,t: εi,t ∼ σi(χ
2(1)− 1)/

√
2 with σ2

i ∼ χ2(1).
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V Time-series heteroskedasticity of εi,t: E(ε2
i,t) = σ2

i,t with σ
2
i,t = 0.4 + 0.8(t − 1)/(T −

1) + 0.4Ui,t, where Ui,t ∼ uniform[0, 1], t = 1, ..., T.

VI Interactive heteroskedasticity of εi,t: E(ε2
i,t) = σ2

i,t with σ
2
i,t = σ2

i (0.4 + 0.8(t− 1)/(T −
1) + 0.4Ui,t), where σ2

i ∼ χ2(1) and Ui,t ∼ uniform[0, 1], t = 1, ..., T.

We also assumed cross-sectional independence and absence of autocorrelation in the

εi,t.

In order to assess how the distributions of the vi,0 = yi,0 − µi affect the properties of
the estimators, we conducted two different sets of experiments (identified by a capital):

in one set, labeled NS, the initial observations are non-stationary, i.e., yi,0 − µi = 0,

i = 1, ..., N, whereas in the other set, labeled S, the initial observations are drawn from

stationary distributions, i.e., (yi,0 − µi) ∼ N(0, σ2
i /(1− ρ2)), i = 1, ..., N .

Note that all four estimators suffer from a weak moment conditions problem under

time series homoskedasticity when ρ is close to one. Furthermore, ρ̂FEQML is a constrained

version of ρ̂REQML, cf. Kruiniger (2013).

When we conducted the experiments, we did not impose time series homoskedasticity

on the likelihood functions. However, we did add the restrictions l2t > 0 and (T − 1)s̃2
v +

l2t > 0, t = 1, ..., T, to the likelihood functions —with l21 = 1 in the case of the weighted

QMLE —to ensure that the estimates of E(uiu
′
i) were positive definite. We also allowed

for time effects by subtracting cross-sectional averages from the data.

Tables 1-18 report the simulation results in terms of the biases and root mean squared

errors (RMSEs) of the four QML estimators for ρ. The tables differ with respect to the

assumptions made about the skedastic properties of the εi,t, the distributions of the

vi,0 = yi,0 − µi and the value of N . In all these tables σ2
µ,i/σ

2
i = 1. Tables 1 and

2 correspond to design I-S, tables 3 and 4 corresponds to design II-S, tables 5 and 6

correspond to design III-S, tables 7 and 8 correspond to design I-NS, tables 9 and 10

correspond to design III-NS, tables 11 and 12 correspond to design IV-S, tables 13 and

14 corresponds to design IV-NS, tables 15 and 16 correspond to design V-S, and tables 17

and 18 correspond to design VI-S In the tables the unweighted QMLEs are labeled RE-

and FEUQMLE whereas the weighted estimators are labeled as RE- and FEWQMLE.

Inspection of the results in tables 1-18 leads to the following conclusions:

1. Under designs I-S, I-NS and V-S (i.e., CS homoskedasticity) the unweighted QMLEs

are more effi cient than their weighted counterparts. The ineffi ciency of the weighted
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QMLEs decreases when T increases.

2. Under design II-S the weighted QMLEs are more effi cient than their unweighted

counterparts when T = 24 and N = 100.

3. Under designs III-S.and III-NS the weighted QMLEs are more effi cient than their

unweighted counterparts when T = 9 or T = 24 and the FEWQMLE is also more

effi cient than the FEUQMLE when T = 4 and ρ > 0.5.

4. Under designs IV-S.and IV-NS the weighted QMLEs are only more effi cient than

their unweighted counterparts when T = 9 or T = 24 and ρ = 0.95.

5. Under designs VI-S.and VI-NS the REWQMLEs are more effi cient than the REUQM-

LEs when T = 9 or T = 24 and the FEWQMLEs are also more effi cient than the

FEUQMLEs when T = 9 and ρ = 0.2 or 0.5 or T = 24.

6. Under designs S the RE estimators are generally more effi cient than their FE coun-

terparts. Moreover, under design III-S the REWQMLE is the most effi cient esti-

mator when T = 4 and ρ = 0.8.

7. Under designs NS the RMSEs of the RE estimators are similar to the RMSEs of

their FE counterparts when T = 9 or T = 24 but under designs I-NS and III-NS

the FE estimators are more effi cient than their RE counterparts when T = 4.

7 Conclusions

In this paper we have proposed asymptotically effi cient ML estimators and GMM estima-

tors for the common parameters in panel data models with (multiplicative) fixed effects

in the variance, e.g. σ2
i,t = σ2

i or more generally σ
2
i,t = σ2

iλ
2
t . We considered estimation of

both ‘static’models, including covariance stationary models, and dynamic models with

arbitrary initial conditions, i.e., ‘non-stationary’models.

A notable feature of the likelihood equations and the moment conditions for models

with (multiplicative) fixed variance effects is the weighting of the data by the individual

variances. This weighting may lead to a considerable improvement in precision of the

corresponding ML and GMM estimators.

The theory in sections 2 and 4 suggests that the FEML estimator for β in the model

yi = µiι+Xiβ+εi, i = 1, ..., N, where {(σ−1
i QXi, σ

−1
i εi)} is an i.i.d. sequence with σ−1

i εi ∼
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N(0, I), E(X ′iQεi) = 0 and Q = I − T−1ιι′, is consistent under suitable conditions and

either large N asymptotics or large N, T asymptotics. Normality of εi is not necessary for

consistency of this estimator: when T is fixed we require symmetry of the distributions of

the εi and E(supb(σi/σ̃i(b))) <∞ where σ̃2
i (b) = 1

T−1
(u′i(b)Qui(b)) with ui(b) = yi−Xib,

i = 1, ..., N, cf. assumption C(iii) in section 4. We also require that E(T−1σ−2
i X ′iQXi) is

finite (for all T ). Identification of β requires that E(T−1σ−2
i X ′iQXi) is nonsingular (for

all T ). The FEML estimator for β can be reinterpreted as the (iterated) Weighted Least

Squares Dummy Variables (LSDV) estimator.

The stationary dynamic panel data model discussed in MaCurdy (1982) and Ahn and

Schmidt (1997) fits the framework discussed in the paper. However, the idea of individual

(variance) weighted moment conditions can also be applied to Arellano-Bond (1991) type

moment conditions which are valid under completely arbitrary heteroskedasticity in both

dimensions and arbitrary initial conditions. For instance, if T is not too small and there is

a substantial degree of heteroskedasticity in the cross-section dimension, then a moment

condition like E((∆yi,t − ρ∆yi,t−1)yi,s/(
∑T

k=2(∆yi,k − ρ∆yi,k−1)2)) = 0 with s ≤ t − 2

may lead to a more effi cient GMM estimator for the autoregressive parameter ρ than

E((∆yi,t − ρ∆yi,t−1)yi,s) = 0 with s ≤ t− 2.
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A Proof of a result in section 2

Recall that H(θ) = E(T−1 dgi(θ)
dθ′ ), where gi(θ) = −(dvecΦi

dθ′ )′([Φi(θ)]
−1 ⊗ [Φi(θ)]

−1)×
vec(Φi(θ)− Zi/σ̃2

i (θ)) = −Fi(θ)vec[I − (T − 1)Si(θ)].

We will show that H(θ0) = −T−1E{Fi(θ0)[I − (T − 1)(vecSi(θ0)(vecSi(θ0))′)]F ′i (θ0)}.
In the derivation we will use two important results from linear algebra: for any con-

formable matrices A, B, and C, we have vec(ABC) = (C ′ ⊗ A)vecB and trAB =

(vecA′)′vecB (see Magnus and Neudecker (1988)).

Noting that (T − 1)σ̃2
i (θ) = tr([Φi(θ)]

−1Zi), we have

(T − 1)
dσ̃2

i (θ)

dθ′
=

(vecZi)
′(dvec[Φi(θ)]

−1)

dθ′
. (43)

After rewriting (vecZi)
′ as (vec(Φ

1/2
i Φ

−1/2
i ZiΦ

−1/2
i Φ

1/2
i ))′ = (vec(Φ

−1/2
i ZiΦ

−1/2
i ))′ ×

(Φ
1/2
i ⊗ Φ

1/2
i ), and using that

dvec[Φi(θ)]
−1

dθ′
= −(Φ−1

i ⊗ Φ−1
i )

dvec[Φi(θ)]

dθ′
, (44)

which is a standard result on matrix differentiation (see Magnus and Neudecker (1988)),

we obtain

(T − 1)
dσ̃2

i (θ)

dθ′
= −(vec(Φ

−1/2
i ZiΦ

−1/2
i ))′(Φ

−1/2
i ⊗ Φ

−1/2
i )

dvecΦi(θ)

dθ′
=

−(T − 1)σ̃2
i (θ)[vecSi(θ)]

′F ′i (θ). (45)

Recalling that E(Φi(θ0)− Zi/σ̃2
i (θ0)) = 0, the result now follows straightforwardly.

B Proof of results in section 3

We give the proofs only for the RE(Q)MLE. The proofs for the FE(Q)MLE are similar.

We first derive the score vector ∂l
∂θ0
, where θ0 = (ρ, π̃, σ̃2

v, ζ
′)′ and l =

∑N
i=1 lRE,i(θ0, σ

2
i )

with

lRE,i(θ0, σ
2
i ) = −T

2
ln(2π)− 1

2
ln |Φ| − T

2
lnσ2

i −
1

2σ2
i

(yi − ρyi,−1 − π̃yi,0ι)′Φ−1(yi − ρyi,−1 − π̃yi,0ι),
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where Φ = Φ(θ0). We obtain

∂l

∂ρ
=

N∑
i=1

(
1

σ2
i

y′i,−1Φ−1(yi − ρyi,−1 − π̃yi,0ι)),

∂l

∂π̃
=

N∑
i=1

(
yi,0
σ2
i

ι′Φ−1(yi − ρyi,−1 − π̃yi,0ι)), (46)

∂l

∂σ̃2
v

=
1

2

N∑
i=1

tr(
dΦ−1

∂σ̃2
v

(Φ− uiu
′
i

σ2
i

)) and

∂l

∂ζ
=

1

2

N∑
i=1

tr(
dΦ−1

∂ζ
(Φ− uiu

′
i

σ2
i

)).

Proof of theorem 4 - large N , fixed T consistency:

The likelihood equations for σ2
i , i = 1, ..., N, are given by

∂lRE,i(θ0, σ
2
i )

∂σ2
i

=
T

2σ2
i

− 1

2σ4
i

tr(Φ−1uiu
′
i) = 0, i = 1, ..., N. (47)

Solving the N equations in (47) for σ2
i , i = 1, ..., N, yields

σ̃2
i = σ̃2

i (θ0) =
1

T
tr([Φ(θ0)]−1uiu

′
i), i = 1, ..., N. (48)

After substituting the σ̃2
i (θ0) = σ̃2

i for the σ
2
i in

∂lRE(θ0,σ21,...,σ
2
N )

∂θ0
= 0, we obtain a system

of dim(θ0) concentrated likelihood equations: ∂lRE(θ,σ̃21(θ0),...,σ̃2N (θ0))

∂θ
|θ0 = 0.

Define L as a T × T matrix with Ls,t = ρs−t−1 if s > t and Ls,t = 0 if s ≤
t. Note that E(σ̃−2

i Φ−1/2uiu
′
iΦ
−1/2) = I. It follows from this and assumption C that

E(σ̃−2
i yi,0ι

′Φ−1ui) = 0, E(σ̃−2
i (yi,−1 − πyi,0ι)′Φ−1ui) = E(σ̃−2

i tr(Φ−1uiu
′
iL
′)) = tr(L′) = 0

and E(Φ − uiu
′
i

σ̃2i
) = 0 and therefore that E(

∂lRE,i(θ0,σ̃
2
i )

∂θ0
) = 0. Note also that σ−1

i y+
i

(i = 1, ..., N) are i.i.d. Furthermore note that ∂lRE,i(θ,σ
2
i (θ̃))

∂θ
|θ̃ is continuous in θ̃ and

E
(

supθ̃

∥∥∥∂lRE,i(θ,σ2i (θ̃))

∂θ
|θ̃
∥∥∥) <∞. Hence plimN→∞θ̂QMLE = θ0.
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Proof of theorem 4 - large N, T consistency:

We assume yi,0 = 0, i = 1, ..., N and that θ does not include π̃. The extension to the

case yi,0 6= 0 is straightforward, see the end of the proof. For the extension to a model

with time dummies, see Bai (2013, p.294 and S.6 in Supplemental Material).

Let B(r) = B be a T × T matrix with Bi,i = 1 and Bi+1,i = −r for i = 1, 2, ..., T − 1,

BT,T = 1 and Bi,j = 0 elsewhere. Let ωT = T−1ι′(Ψ(ζ))−1ι and wT = T−1ι′(Ψ(z))−1ι.

The model is B(ρ)yi = ιηi + εi = ui. Let Γ(ρ) = (B(ρ))−1, then yi = Γ(ρ)(ιηi + εi).

lRE,i(θ, s
2
i ) = −1

2
ln |Φ| − T

2
ln s2

i −
1

2s2
i

tr(Φ−1Byiy
′
iB
′)

= −1

2
ln |Ψ| − 1

2
ln(1 + T s̃2

vwT )− T

2
ln s2

i

− 1

2s2
i

tr(Byiy
′
iB
′Ψ−1) +

1

2s2
i

s̃2
v

1 + T s̃2
vwT

(ιΨ−1Byiy
′
iB
′Ψ−1ι)

where |Φ| = (1 + T s̃2
vwT ) |Ψ| follows from Lemma 2.1 in Magnus (1982).

Let us define JT = −dB/dr and L = JTΓ(r) (cf. Bai, 2013, p.300). Note that

Byi = yi − ryi,−1 = ui + (ρ− r)yi,−1 = ui + (ρ− r)Lui = ui(θ) and

σ̃2
i (θ) = T−1tr([Φ(θ)]−1ui(θ)u

′
i(θ)) = T−1tr([Φ(θ)]−1Byiy

′
iB
′), i = 1, ..., N.

The proof now proceeds as follows. In the first step we replace s2
i in the log-likelihood

function
∑N

i=1 lRE,i(θ, s
2
i ) by σ

2
i + op(1) ∀i ∈ {1, ..., N} and prove that plimN,T→∞θ̂ = θ0

using a version of Bai’s proof. In the second step we note that σ̃2
i (θ), i = 1, ..., N,

maximize the log-likelihood function for any given θ and we show that σ̃2
i (θ̂) = σ2

i +op(1)

∀i ∈ {1, ..., N} when N, T →∞, which justifies replacing s2
i in the log-likelihood function∑N

i=1 lRE,i(θ, s
2
i ) by σ

2
i + op(1) ∀i ∈ {1, ..., N}. The first step:

Let SN = N−1
∑

i(yiy
′
i/(σ

2
i + op(1))) and Σ(θ0) = Γ(ρ)(σ̃2

vιι
′ + Ψ(ζ))Γ(ρ)′. Then

BSNB
′Φ−1 = BΣ(θ0)B′Φ−1(N−1

∑
i(σ

2
i /(σ

2
i + op(1)))) +

BΓ(ρ)(N−1
∑

i(σ
2
i (η

2
i ιι
′/σ2

i − σ̃2
vιι
′)/(σ2

i + op(1))))Γ(ρ)′B′Φ−1 +

BΓ(ρ)(N−1
∑

i(σ
2
i (εiε

′
i/σ

2
i −Ψ(ζ))/(σ2

i + op(1))))Γ(ρ)′B′Φ−1 +

BΓ(ρ)(N−1
∑

i(ηiιε
′
i/(σ

2
i + op(1))))Γ(ρ)′B′Φ−1 +

BΓ(ρ)(N−1
∑

i(ηiεiι
′/(σ2

i + op(1))))Γ(ρ)′B′Φ−1.
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Similarly to the proof of Lemma A.1 in Bai (2013), one can show that as N, T → ∞,
uniformly on Θ,

T−1tr(BΓ(ρ)(N−1
∑

i(σ
2
i (η

2
i ιι
′/σ2

i − σ̃2
vιι
′)/(σ2

i + op(1))))Γ(ρ)′B′Φ−1) = op(1), and

T−2tr(ι′Φ−1BΓ(ρ)(N−1
∑

i(σ
2
i (η

2
i ιι
′/σ2

i − σ̃2
vιι
′)/(σ2

i + op(1))))Γ(ρ)′B′Φ−1ι) + op(1).

Using a lemma similar to Lemma A.1 in Bai, we obtain as N, T →∞, uniformly on Θ,

T−1tr(BSNB
′Φ−1) = T−1tr(BΣ(θ0)B′Φ−1) + op(1),

T−2tr(ι′Φ−1BSNB
′Φ−1ι) = T−2tr(ι′Φ−1BΣ(θ0)B′Φ−1ι) + op(1), and

T−1tr(ι′Φ−1BSNB
′Φ−1ι)/(ι′Φ−1ι) = T−1tr(ι′Φ−1BΣ(θ0)B′Φ−1ι)/(ι′Φ−1ι) + op(1).

Furthermore, the diagonal elements of (B̂SN B̂
′ − B̂Σ(θ0)B̂′) are op(1) when N, T →∞,

where B̂ = B(ρ̂). Next, using lemmas similar to Lemmas 2 and 3 in Bai, we obtain

plimN,T→∞θ̂ = θ0.

The second step:

Note that Φ(θ) = s̃2
vιι
′ + Ψ and [Φ(θ)]−1 = Ψ−1 − s̃2

v(s̃
2
vι
′Ψ−1ι+ 1)−1Ψ−1ιι′Ψ−1.

We can easily check the following results, cf. Bai:

1
T
tr([Φ(θ)]−1Luiu

′
iL
′) =:

1
T
tr([Φ(θ)]−1L(εiε

′
i − σ2

iΨ0)L′) =

Wi = εiε
′
i − σ2

iΨ0

tr(Ψ−1LWiL
′) =

∑T−1
t=1 l

−2
t+1

∑t
h=1 ρ

t−h∑t
k=1 ρ

t−kWi,hk

supΨ

∣∣ 1
T
tr(Ψ−1L(εiε

′
i − σ2

iΨ0)L′)
∣∣ = Op(1).

supΨ

∣∣ 1
T 2
tr(Ψ−1ιι′Ψ−1L(εiε

′
i − σ2

iΨ0)L′)
∣∣ = Op(1).

1
T
tr([Φ(θ)]−1Lιηiε

′
iL
′) =

supΨ

∣∣ 1
T
tr(Ψ−1Lιηiε

′
iL
′)
∣∣ = Op(1).

supΨ

∣∣ 1
T 2
tr(Ψ−1ιι′Ψ−1Lιηiε

′
iL
′)
∣∣ = Op(1).

1
T
tr([Φ(θ)]−1Lιι′L′η2

i ) =

supΨ

∣∣ 1
T
tr(Ψ−1Lιι′L′η2

i )
∣∣ = Op(1).

supΨ

∣∣ 1
T 2
tr(Ψ−1ιι′Ψ−1Lιι′L′η2

i )
∣∣ = Op(1).

1
T
tr([Φ(θ)]−1Luiu

′
i) =:

1
T
tr([Φ(θ)]−1L(εiε

′
i − σ2

iΨ0)) =
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tr(Ψ−1LWi) =
∑T−2

k=0 ρ
k
∑T

t=k+2 l
−2
t εi,t−k−1εi,t

supΨ

∣∣ 1
T
tr(Ψ−1L(εiε

′
i − σ2

iΨ0))
∣∣ = Op(1).

supΨ

∣∣ 1
T 2
tr(Ψ−1ιι′Ψ−1L(εiε

′
i − σ2

iΨ0))
∣∣ = Op(1).

1
T
tr([Φ(θ)]−1Lιηiε

′
i) =

supΨ

∣∣ 1
T
tr(Ψ−1Lιηiε

′
i)
∣∣ = Op(1).

supΨ

∣∣ 1
T 2
tr(Ψ−1ιι′Ψ−1Lιηiε

′
i)
∣∣ = Op(1).

1
T
tr([Φ(θ)]−1Lιι′η2

i ) =

supΨ

∣∣ 1
T
tr(Ψ−1Lιι′η2

i )
∣∣ = Op(1).

supΨ

∣∣ 1
T 2
tr(Ψ−1ιι′Ψ−1Lιι′η2

i )
∣∣ = Op(1).

1
T
σ2
i tr([Φ(θ)]−1LΨ0L

′) =

supΨ

∣∣ 1
T
σ2
i tr(Ψ

−1LΨ0L
′)
∣∣ = O(1).

supΨ

∣∣ 1
T 2
σ2
i tr(Ψ

−1ιι′Ψ−1LΨ0L
′)
∣∣ = O(T−1).

1
T
σ2
i tr([Φ(θ)]−1LΨ0) =

supΨ
1
T
σ2
i tr(Ψ

−1LΨ0) = 0.

supΨ

∣∣ 1
T 2
σ2
i tr(Ψ

−1ιι′Ψ−1LΨ0)
∣∣ = O(T−1).

Now consider T−1tr([Φ(θ̂)]−1uiu
′
i). Note that

T−1tr([Φ(θ)]−1uiu
′
i) = T−1u′iΨ

−1ui − T−1s̃2
v(s̃

2
vι
′Ψ−1ι+ 1)−1u′iΨ

−1ιι′Ψ−1ui.

T−1ε′i([Ψ(θ̂)]−1)εi =:

T−1tr([Ψ(θ)]−1(εiε
′
i − σ2

iΨ0)) = T−1
∑T

t=1(ε2
i,t − σ2

iλ
2
t )/l

2
t =

T−1
∑T

t=1((ε2
i,t/λ

2
t − σ2

i )(λ
2
t/l

2
t )) = Op(T

−1/2) uniformly on Θ.

Hence T−1tr([Ψ(θ̂)]−1(εiε
′
i − σ2

iΨ0)) = Op(T
−1/2)

T−1σ2
i tr([Ψ(θ̂)]−1Ψ0) = σ2

i +Op(T
−1/2N−1/2) because λ̂

2

t −λ2
t = Op(N

−1/2)+Op(T
−1).

Hence T−1ε′i([Ψ(θ̂)]−1)εi = σ2
i +Op(T

−1/2) +Op(T
−1/2N−1/2)

Similarly T−1ι′([Ψ(θ̂)]−1)εi = Op(T
−1/2)

T−1ι′[Φ(θ)]−1ιη2
i = T−1ιΨ−1ιη2

i − T−1s̃2
v(s̃

2
vι
′Ψ−1ι+ 1)−1(ιΨ−1ι)2η2

i =

(s̃2
vι
′Ψ−1ι+ 1)−1(T−1ιΨ−1ιη2

i )

(s̃2
vι
′Ψ−1ι+ 1)−1(ιΨ−1ι)− 1/s̃2

v = o(1) uniformly on Θ.

Hence T−1ι′[Φ(θ̂)]−1ιη2
i = Op(T

−1)

We also have T−1ι′([Ψ(θ̂)]−1)εiηi = Op(T
−1/2)

We conclude T−1tr([Φ(θ̂)]−1uiu
′
i) = σ2

i + op(1)
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Since ρ̂ = ρ+ op(1) we conclude

σ̃2
i (θ̂) = T−1tr([Φ(θ̂)]−1Byiy

′
iB
′)

= T−1tr([Φ(θ̂)]−1(ui + (ρ− ρ̂)Lui)(ui + (ρ− ρ̂)Lui)
′)

= T−1tr([Φ(θ̂)]−1uiu
′
i) + op(1)

= σ2
i + op(1) ∀i when N, T →∞. �

The extension to the case yi,0 6= 0 is straightforward: we only need to redefine SN as

SN = N−1
∑

i((yi−πyi,0)(yi−πyi,0)′/(σ2
i +op(1))). The vector θ, which now also includes

π, is again identified and θ̂ is again joint N, T consistent (and asymptotically normal).

Note that in the case yi,0 6= 0, the REQMLE discussed in Bai (2013, S.3 in Supplemen-

tal Material) is different from our REQMLE. Our REQMLE is equal to Chamberlain’s

REMLE which uses the decomposition of the ‘correlated effects’ηi given in (28). In-

stead of using (28), Bai adds an equation for the initial condition to the model for yi,

i.e., yi,0 = δ0 + φηi + εi,0, where δ0 and φ are parameters and εi,0 is a random variable

with E(εi,0) = 0 and V ar(εi,0) = σ2
0, and then derives and estimates a factor model for

y+
i = (yi,0, y

′
i)
′ : y+

i = δ+ + Γ+(φ, ι′)′ηi + Γ+ε+
i , where δ

+ is a parameter vector and Γ+

has exactly the same form as Γ but dimension (T + 1)× (T + 1) and ε+
i = (εi,0, ε

′
i)
′. Note

that Bai’s REQMLE does not estimate π, whereas our REQMLE does not estimate φ.

Proof of theorem 5:

The proof is similar to the proof of theorem 4 for the case T → ∞ with the fol-

lowing changes: replace θ0 by θ0 and σ2
i by σ

2
i , i = 1, ..., N . Then in the first step we

replace s2
i in the log-likelihood function

∑N
i=1 lRE,i(θ, s

2
i ) by σ

2
i + op(1) ∀i ∈ {1, ..., N}

and prove that plimN,T→∞θ̂ = θ0 using a version of Bai’s (2013) proof. To prove lemmas

similar to Lemmas A.1, 2 and 3 in Bai, we make use of inter alia assumption C′(iii),

which implies that plimN,T→∞N
−1
∑N

i=1

(
diag(σ2

i,1, ..., σ
2
i,T )/(σ2

i + op(1))
)

= Ψ(θ0) and

that plimN,T→∞N
−1
∑N

i=1 (η2
i /(σ

2
i + op(1))) = σ̃2

v. The full proof of step 1 is given be-

low. The second step is straightforward: plimN,T→∞σ̃
2
i (θ̂) = plimT→∞σ̃

2
i (θ0) = σ2

i 6= 0,

i = 1, ..., N, by assumption C′(iii).

Proof of step 1:

Let SN = N−1
∑

i(yiy
′
i/(σ

2
i + op(1))), let ΣN(θ0) = Γ(ρ)(σ̃2

v,N ιι
′ + Ψ(ζN))Γ(ρ)′ with
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σ̃2
v,N = N−1

∑N
i=1 (η2

i /(σ
2
i + op(1))) and Ψ(ζN) = N−1

∑N
i=1(diag(σ2

i +op(1), σ2
i,2, ..., σ

2
i,T )/

(σ2
i + op(1))), and let Ψ̃N(θ0) = N−1

∑N
i=1

(
diag(σ2

i,1, ..., σ
2
i,T )/(σ2

i + op(1))
)
. Then

BSNB
′Φ−1 = BΣN(θ0)B′Φ−1 +

BΓ(ρ)(Ψ̃N(θ0)−Ψ(ζN))Γ(ρ)′B′Φ−1 +

BΓ(ρ)(N−1
∑

i(εiε
′
i/(σ

2
i + op(1)))− Ψ̃N(θ0))Γ(ρ)′B′Φ−1 +

BΓ(ρ)(N−1
∑

i(ηiιε
′
i/(σ

2
i + op(1))))Γ(ρ)′B′Φ−1 +

BΓ(ρ)(N−1
∑

i(ηiεiι
′/(σ2

i + op(1))))Γ(ρ)′B′Φ−1.

Using assumption C′(iii), which implies that plimN,T→∞N
−1
∑N

i=1(σ2
i,1/(σ

2
i + op(1))) = 1,

and BΓ(ρ) = I + (ρ − r)L0, where L0 denotes L at r = ρ, it is easily seen that as

N, T →∞, uniformly on Θ,

T−1tr(BΓ(ρ)(Ψ̃N(θ0)−Ψ(ζN))Γ(ρ)′B′Φ−1) = op(1),

T−2tr(ι′Φ−1B(Ψ̃N(θ0)−Ψ(ζN))B′Φ−1ι) = op(1),

T−1tr(ι′Φ−1B(Ψ̃N(θ0)−Ψ(ζN))B′Φ−1ι)/(ι′Φ−1ι) = op(1).

Using these results, assumption C′ and a lemma similar to Lemma A.1 in Bai (2013), we

also obtain that as N, T →∞, uniformly on Θ,

T−1tr(BSNB
′Φ−1) = T−1tr(BΣN(θ0)B′Φ−1) + op(1),

T−2tr(ι′Φ−1BSNB
′Φ−1ι) = T−2tr(ι′Φ−1BΣN(θ0)B′Φ−1ι) + op(1), and

T−1tr(ι′Φ−1BSNB
′Φ−1ι)/(ι′Φ−1ι) = T−1tr(ι′Φ−1BΣN(θ0)B′Φ−1ι)/(ι′Φ−1ι) + op(1).

Furthermore, the diagonal elements of (B̂SN B̂
′− B̂ΣN(θ0)B̂′) are op(1) when N, T →∞,

where B̂ = B(ρ̂). Finally, using lemmas similar to Lemmas 2 and 3 in Bai, we obtain

that plimN,T→∞θ̂ = θ0. �
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Proof of theorem 7:

The derivation of the asymptotic distribution of θ̂ = θ̂REQMLE is largely similar to

the derivation in Bai (2013) but in our case we also have to consider some potential bias

terms that are related to the presence of the σ̃2
i (θ̂):

In the case of the distribution of ρ̂ = ρ̂REQMLE, we need to consider the following

additional terms related to the σ̃2
i (θ̂):

(NT )−1/2
∑N

i=1

(
ε′iΨ
−1Lιηi
σ̃2i (θ̂)

− ε′iΨ
−1Lιηi
σ2i

)
− ι′Ψ̂−1Lι

T ω̂
(NT )−1/2

∑N
i=1

(
ε′iΨ
−1ιηi

σ̃2i (θ̂)
− ε′iΨ

−1ιηi
σ2i

)
.

Recall from Bai that ι′Ψ̂−1Lι
T ω̂T

= (1− ρ)−1 +Op(1/T ).

Next consider−(NT )−1/2
∑N

i=1

(
ε′iΨ
−1ιηi

σ̃2i (θ̂)
− ε′iΨ

−1ιηi
σ2i

)
= (NT )−1/2

∑N
i=1

ε′iΨ
−1ιηi
σ4i

(σ̃2
i (θ̂)−

σ2
i ) + op(1) = (NT )−1/2

∑N
i=1

∑T
t=1

εi,tηi
λ2tσ

4
i
(T−1

∑T
s=1(

ε2i,s
λ2s
− σ2

i )) + op(1).

This factor has expected value: (N/T )1/2(NT )−1
∑N

i=1

∑T
t=1

E(ε3i,t)ηi

λ4tσ
4
i
.

The associated potentially nonnegligible bias term is the product of the preceding

expression and (1− ρ)−1, cf. top of p. 312 in Bai. The other term we need to consider is:

(NT )−1/2
∑N

i=1

(
ε′iΨ
−1Lιηi
σ̃2i (θ̂)

− ε′iΨ
−1Lιηi
σ2i

)
= −(NT )−1/2

∑N
i=1

ε′iΨ
−1Lιηi
σ4i

(σ̃2
i (θ̂)−σ2

i )+op(1).

This term has expected value: −(N/T )1/2(NT )−1
∑N

i=1

∑T
t=1

E(ε3i,t)mtηi

λ4tσ
4
i

where mt =

1 + ρ + ... + ρt−2 → (1 − ρ)−1 so that (N/T )1/2(NT )−1
∑N

i=1

∑T
t=1

E(ε3i,t)mtηi

λ4tσ
4
i

→ (1 −

ρ)−1(N/T )1/2(NT )−1
∑N

i=1

∑T
t=1

E(ε3i,t)ηi

λ4tσ
4
i
.

Thus the additional bias terms cancel out.

In the case of the distribution of ̂̃σ2

v = ̂̃σ2

v,REQMLE, there is an additional bias term

that is related to the σ̃2
i (θ̂):

(NT )−1
∑N

i=1

(
ε′iΨ
−1ιηi

σ̃2i (θ̂)
− ε′iΨ

−1ιηi
σ2i

)
= −(NT )−1

∑N
i=1

ε′iΨ
−1ιηi
σ4i

(σ̃2
i (θ̂) − σ2

i ) + op(1) =

−(NT )−1
∑N

i=1

∑T
t=1

εi,tηi
λ2tσ

4
i
(T−1

∑T
s=1(

ε2i,s
λ2s
− σ2

i )) + op(1).

The additional bias term is: −(2/(TωT ))(NT )−1
∑N

i=1

∑T
t=1

E(ε3i,t)ηi

λ4tσ
4
i

= b
T

= O(1/T ).

In the case of the asymptotic distributions of λ̂
2

t = λ̂
2

t,REQMLE, t = 1, ..., T, we need

to consider some additional terms related to σ̃2
i (θ̂):

First consider the term N−1
∑N

i=1
εiε
′
i

σ4i
(σ̃2

i (θ̂)− σ2
i ) :

N−1
∑N

i=1

ε2i,t
σ4i

(σ̃2
i (θ̂)− σ2

i ) = N−1
∑N

i=1

ε2i,t
σ4i

(T−1
∑T

s=1(
ε2i,s
λ2s
− σ2

i )) + op(1) =

(NT )−1
∑N

i=1

ε4i,t−σ2i λ
2
t ε
2
i,t

σ4i λ
2
t

+ (NT )−1
∑N

i=1

∑T
s 6=t

(ε2i,s−σ2i λ
2
s)ε2i,t

σ4i λ
2
s

+ op(1).

This term has expected value: (NT )−1
∑N

i=1

E(ε4i,t)−σ2i λ
2
tE(ε2i,t)

σ4i λ
2
t

= O(1/T ).

Next consider (NT )−1
∑N

i=1
ε′iΨ
−1ιηi
σ4i

(σ̃2
i (θ̂)−σ2

i ) = (NT )−1
∑N

i=1

∑T
t=1

εi,tηi
λ2tσ

4
i
(T−1

∑T
s=1(

ε2i,s
λ2s
−

σ2
i )) + op(1).
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This term has expected value: (1/T )(NT )−1
∑N

i=1

∑T
t=1

E(ε3i,t)ηi

λ4tσ
4
i

= O(1/T ).

Finally, consider the term (NT )−1
∑N

i=1
εiι
′

σ4i
(ε′iΨ

−1ι)(σ̃2
i (θ̂)− σ2

i ) :

(NT )−1
∑N

i=1
εi,t
σ4i

(ε′iΨ
−1ι)(σ̃2

i (θ̂)− σ2
i ) =

(NT )−1
∑N

i=1
εi,t
σ4i

(ε′iΨ
−1ι)(T−1

∑T
s=1(

ε2i,s
λ2s
− σ2

i )) + op(1) =

(NT )−1
∑N

i=1

ε2i,t
σ4i λ

2
t
(T−1

∑T
s=1(

ε2i,s
λ2s
− σ2

i )) + op(1).

This term has expected value: T−1(NT )−1
∑N

i=1

E(ε4i,t)−σ2i λ
2
tE(ε2i,t)

σ4i λ
4
t

= O(1/T 2).

As the expected values of the three preceding terms are O(1/T ) or O(1/T 2), they

do not affect the asymptotic distributions of λ̂
2

t = λ̂
2

t,REQMLE, t = 1, ..., T, as long as
√
N/T → 0.

To prove (33), we use results from the second step in the proof of theorem 4.

They imply
√
T (σ̃2

i (θ̂)−σ2
i ) =

√
T (T−1tr([Ψ(θ̂)]−1εiε

′
i)−σ2

i )+Op(T
−1/2)+Op(N

−1/2),

i = 1, ..., N. Note that

T−1/2(tr(([Ψ(θ̂)]−1 − [Ψ(θ0)]−1)εiε
′
i)) = −T−1/2

∑T
t=1(

ε2i,t
λ4t

(λ̂
2

t − λ2
t + op(1))) =

−(NT )−1/2
∑T

t=1(
ε2i,t
λ4t
N1/2(λ̂

2

t − λ2
t + op(1))) =

−T−1/2N−1
∑T

t=1(
ε4i,t
λ4tσ

2
i
) = −T 1/2N−1T−1

∑T
t=1(

ε4i,t
λ4tσ

2
i
) +Op(N

−1/2).

Hence
√
T (σ̃2

i (θ̂)− σ2
i ) =

√
T (T−1tr([Ψ(θ0)]−1εiε

′
i)− σ2

i ) + op(1), i = 1, ..., N.

The proof of (34) is similar to that of Theorem 1 in Bai and makes use of the preceding

results.

The proofs of the remaining claims are straightforward.

Proof of theorem 8:

The proof is straightforward: to prove theorem 8, one can follow e.g. White (1994).
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Large N , fixed T limiting distribution:

Let ∆̃yi = yi − yi,0ι, ∆̃yi,−1 = yi,−1 − yi,0ι and ui = ∆̃yi − ρ∆̃yi,−1. Then the log-

likelihood function for the non-stationary panel AR(1) model with fixed effects is given

by l = lFE =
∑N

i=1 lFE,i(θ0, σ
2
i ) with θ0 = (ρ, σ̃2

v, ζ
′)′ and

lFE,i(θ0, σ
2
i ) = −T

2
ln(2π)− 1

2
ln |Φ| − T

2
lnσ2

i −
1

2σ2
i

(∆̃yi − ρ∆̃yi,−1)′Φ−1(∆̃yi − ρ∆̃yi,−1).

Assume that Ψ = I so that Φ = σ̃2
vιι
′ + I. Then Φ−1 = Q+ 1

1+T σ̃2v

1
T
ιι′ and

lFE,i(θ0, σ
2
i ) = −T

2
ln(2π)− 1

2
ln(1 + T σ̃2

v)−
T

2
lnσ2

i −
1

2σ2
i

(∆̃yi − ρ∆̃yi,−1)′Q(∆̃yi − ρ∆̃yi,−1)−

1

2σ2
i

1

1 + T σ̃2
v

1

T
(ι′(∆̃yi − ρ∆̃yi,−1))2.

∂l

∂ρ
=

N∑
i=1

(
1

σ2
i

u′iΦ
−1∆̃yi,−1),

∂l

∂σ̃2
v

= − NT

2(1 + T σ̃2
v)

+
1

2(1 + T σ̃2
v)

2

N∑
i=1

(ι′ui)
2

σ2
i

.

Suppose the σ2
i are known:

∂2l(θ0, σ
2
i )

∂ρ2
= −

N∑
i=1

(
1

σ2
i

(∆̃yi,−1)′Φ−1(∆̃yi,−1)),

∂2l(θ0, σ
2
i )

∂ρ∂σ̃2
v

= − 1

(1 + T σ̃2
v)

2

N∑
i=1

(ι′ui)(ι
′(∆̃yi,−1))

σ2
i

,

∂2l(θ0, σ
2
i )

∂(σ̃2
v)

2
=

NT 2

2(1 + T σ̃2
v)

2
− T

(1 + T σ̃2
v)

3

N∑
i=1

(ι′ui)
2

σ2
i

.
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plimN→∞
1

N

∂l(θ0)

∂ρ

∂l(θ0)

∂ρ
= plimN→∞

1

N

N∑
i=1

(
1

σ4
i

(∆̃yi,−1)′Φ−1uiu
′
iΦ
−1(∆̃yi,−1)),

plimN→∞
1

N

∂l(θ0)

∂ρ

∂l(θ0)

∂σ̃2
v

=

plimN→∞
1

2(1 + T σ̃2
v)

2

1

N

N∑
i=1

(
1

σ4
i

(∆̃yi,−1)′Φ−1ui(ι
′ui)

2),

plimN→∞
1

N

∂l(θ0)

∂σ̃2
v

∂l(θ0)

∂σ̃2
v

=

plimN→∞(− T 2

4(1 + T σ̃2
v)

2
+

1

4(1 + T σ̃2
v)

4

1

N

N∑
i=1

(ι′ui)
4

σ4
i

).

Suppose the σ2
i are unknown: substitute σ̃

2
i = σ̃2

i (θ0) for σ2
i in

∂l(θ0)
∂θ0

∂l(θ0)
∂θ′0

,

∂σ̃2
i

∂ρ
= − 2

T
(∆̃yi,−1)′Φ−1ui,

∂σ̃2
i

∂σ̃2
v

= − 1

T (1 + T σ̃2
v)

2
(ι′ui)

2.

∂2l(θ0)

∂ρ2
=

∂2l(θ0, σ̃
2
i )

∂ρ2
−

N∑
i=1

(
1

σ̃4
i

(∆̃yi,−1)′Φ−1ui
∂σ̃2

i

∂ρ
),

∂2l(θ0)

∂ρ∂σ̃2
v

=
∂2l(θ0, σ̃

2
i )

∂ρ∂σ̃2
v

− 1

2(1 + T σ̃2
v)

2

N∑
i=1

(
(ι′ui)

2

σ̃4
i

∂σ̃2
i

∂ρ

)
,

∂2l(θ0)

∂(σ̃2
v)

2
=

∂2l(θ0, σ̃
2
i )

∂(σ̃2
v)

2
− 1

2(1 + T σ̃2
v)

2

N∑
i=1

(
(ι′ui)

2

σ̃4
i

∂σ̃2
i

∂σ̃2
v

)
.
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General case: Φ = Φ(ξ) = σ̃2
vιι
′+Ψ(ζ) where ξ = (σ̃2

v ζ
′)′. Reformulate the RE model

as ∆̃yi,−1 = ρ∆̃yi,−1 + π̆ιyi,0 + ui with π̆ = (π − 1)(1 − ρ). In the FE model π̆ = 0. We

derive components of the limiting variance of the REMLE for (ρ π̆ ξ′)′.

∂l

∂ρ
=

N∑
i=1

(
1

σ2
i

u′iΦ
−1∆̃yi,−1),

∂l

∂π̆
=

N∑
i=1

(
1

σ2
i

u′iΦ
−1ιyi,0),

∂l

∂ξ
=

N∑
i=1

(
1

2σ2
i

(
∂vecΦ−1

∂ξ′
)′vec(σ2

iΦ− uiu′i)
)

= −
N∑
i=1

(
1

2σ2
i

(
∂vecΦ

∂ξ′
)′Φ−1 ⊗ Φ−1vec(σ2

iΦ− uiu′i)
)
.

Suppose the σ2
i are known:

∂2l(θ0, σ
2
i )

∂ρ2
= −

N∑
i=1

(
1

σ2
i

(∆̃yi,−1)′Φ−1(∆̃yi,−1)),

∂2l(θ0, σ
2
i )

∂ρ∂π̆
= −

N∑
i=1

(
1

σ2
i

(∆̃yi,−1)′Φ−1(ιyi,0)),

∂2l(θ0, σ
2
i )

∂π̆2 = −
N∑
i=1

(
1

σ2
i

(ιyi,0)′Φ−1(ιyi,0)),

∂2l(θ0, σ
2
i )

∂ρ∂ξ
=

N∑
i=1

(
1

σ2
i

u′i
∂Φ−1

∂ξ
(∆̃yi,−1)

)

= −
N∑
i=1

(
1

σ2
i

(
∂vecΦ

∂ξ′
)′Φ−1 ⊗ Φ−1vec(∆̃yi,−1u

′
i)

)
,

∂2l(θ0, σ
2
i )

∂ρ∂π̆
=

N∑
i=1

(
1

σ2
i

u′i
∂Φ−1

∂ξ
(ιyi,0)

)
,

∂2l(θ0, σ
2
i )

∂ξ∂ξ′
= −1

2
N(

∂vecΦ

∂ξ′
)′Φ−1 ⊗ Φ−1(

∂vecΦ

∂ξ′
).

plimN→∞
1

N

∂l(θ0)

∂ρ

∂l(θ0)

∂ρ
= plimN→∞

1

N

N∑
i=1

(
1

σ4
i

(∆̃yi,−1)′Φ−1uiu
′
iΦ
−1(∆̃yi,−1)),

plimN→∞
1

N

∂l(θ0)

∂ρ

∂l(θ0)

∂π̆
= plimN→∞

1

N

N∑
i=1

(
1

σ4
i

(∆̃yi,−1)′Φ−1uiu
′
iΦ
−1(ιyi,0)),
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plimN→∞
1

N

∂l(θ0)

∂π̆

∂l(θ0)

∂π̆
= plimN→∞

1

N

N∑
i=1

(
1

σ4
i

(ιyi,0)′Φ−1uiu
′
iΦ
−1(ιyi,0)),

plimN→∞
1

N

∂l(θ0)

∂ρ

∂l(θ0)

∂ξ
= plimN→∞

1

N

N∑
i=1

(
− 1

2σ4
i

(u′iΦ
−1∆̃yi,−1)(u′i

∂Φ−1

∂ξ
ui)

)
,

plimN→∞
1

N

∂l(θ0)

∂π̆

∂l(θ0)

∂ξ
= plimN→∞

1

N

N∑
i=1

(
− 1

2σ4
i

(u′iΦ
−1ιyi,0)(u′i

∂Φ−1

∂ξ
ui)

)
,

plimN→∞
1

N

∂l(θ0)

∂ξ

∂l(θ0)

∂ξ′
= plimN→∞

1

2
(
∂vecΦ

∂ξ′
)′Φ−1 ⊗ Φ−1(

∂vecΦ

∂ξ′
).

Suppose the σ2
i are unknown: substitute σ̃

2
i = σ̃2

i (θ0) for σ2
i in

∂l(θ0)
∂θ0

∂l(θ0)
∂θ′0

,

∂σ̃2
i

∂ρ
= − 2

T
(∆̃yi,−1)′Φ−1ui,

∂σ̃2
i

∂π̆
= − 2

T
(ιyi,0)′Φ−1ui,

∂σ̃2
i

∂ξ
= − 1

T
(
∂vecΦ

∂ξ′
)′Φ−1 ⊗ Φ−1vec(uiu

′
i).

∂2l(θ0)

∂ρ2
=

∂2l(θ0, σ̃
2
i )

∂ρ2
−

N∑
i=1

(
1

σ̃4
i

(∆̃yi,−1)′Φ−1ui
∂σ̃2

i

∂ρ
),

∂2l(θ0)

∂ρ∂π̆
=

∂2l(θ0, σ̃
2
i )

∂ρ∂π̆
−

N∑
i=1

(
1

σ̃4
i

(ιyi,0)′Φ−1ui
∂σ̃2

i

∂ρ
),

∂2l(θ0)

∂π̆2 =
∂2l(θ0, σ̃

2
i )

∂π̆2 −
N∑
i=1

(
1

σ̃4
i

(ιyi,0)′Φ−1ui
∂σ̃2

i

∂π̆
),

∂2l(θ0)

∂ρ∂ξ
=

∂2l(θ0, σ̃
2
i )

∂ρ∂ξ
−

N∑
i=1

(
1

2σ̃4
i

(
∂vecΦ−1

∂ξ′
)′vec(−uiu′i)

∂σ̃2
i

∂ρ

)
,

∂2l(θ0)

∂π̆∂ξ
=

∂2l(θ0, σ̃
2
i )

∂π̆∂ξ
−

N∑
i=1

(
1

2σ̃4
i

(
∂vecΦ−1

∂ξ′
)′vec(−uiu′i)

∂σ̃2
i

∂π̆

)
,

∂2l(θ0)

∂ξ∂ξ′
=

∂2l(θ0, σ̃
2
i )

∂ξ∂ξ′
−

N∑
i=1

(
1

2σ̃4
i

(
∂vecΦ

∂ξ′
)′Φ−1 ⊗ Φ−1vec(uiu

′
i)
∂σ̃2

i

∂ξ

)
.
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Table 1: Estimators of ρ; Design I-S; 5000 replications.

N = 100 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 -.0001 0.0837 .0016 0.0906 .0071 0.1241 .0060 0.1158
4 0.50 .0132 0.1288 .0324 0.1703 .0303 0.1860 .0427 0.2022
4 0.80 .0416 0.1766 .0388 0.1879 .0392 0.2119 .0402 0.2145
4 0.95 .0535 0.1825 .0388 0.1772 .0498 0.2163 .0477 0.2037
9 0.20 -.0002 0.0400 -.0003 0.0400 -.0006 0.0436 -.0006 0.0436
9 0.50 -.0007 0.0424 -.0007 0.0424 .0001 0.0480 -.0003 0.0480
9 0.80 .0072 0.0663 .0158 0.0854 .0095 0.0748 .0206 0.0964
9 0.95 .0182 0.0755 .0174 0.0812 .0183 0.0806 .0088 0.0872
24 0.20 .0001 0.0218 .0001 0.0218 -.0001 0.0228 -.0001 0.0228
24 0.50 -.0006 0.0206 -.0006 0.0206 -.0005 0.0214 -.0005 0.0214
24 0.80 -.0006 0.0184 -.0006 0.0188 -.0007 0.0193 -.0006 0.0197
24 0.95 -.0084 0.0167 .0006 0.0230 -.0089 0.0175 -.0015 0.0230

Table 2: Estimators of ρ; Design I-S; 5000 replications.

N = 500 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0010 0.0361 .0012 0.0374 .0014 0.0480 .0015 0.0458
4 0.50 .0012 0.0469 .0028 0.0548 .0030 0.0671 .0049 0.0728
4 0.80 .0078 0.0794 .0270 0.1196 .0144 0.1063 .0298 0.1338
4 0.95 .0223 0.1091 .0097 0.1091 .0179 0.1334 .0126 0.1245
9 0.20 .0004 0.0174 .0004 0.0174 .0004 0.0193 .0004 0.0193
9 0.50 .0001 0.0190 .0001 0.0192 .0002 0.0209 .0002 0.0210
9 0.80 .0004 0.0238 .0015 0.0285 .0003 0.0268 .0019 0.0323
9 0.95 .0045 0.0397 .0101 0.0502 .0038 0.0428 .0077 0.0524
24 0.20 . . . . . . . .
24 0.50 . . . . . . . .
24 0.80 . . . . . . . .
24 0.95 . . . . . . . .
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Table 3: Estimators of ρ; Design II-S; 5000 replications.

N = 100 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0008 0.0894 .0020 0.0949 .0070 0.1237 .0065 0.1175
4 0.50 .0132 0.1360 .0280 0.1712 .0265 0.1803 .0374 0.1960
4 0.80 .0431 0.1844 .0436 0.1965 .0432 0.2128 .0374 0.2100
4 0.95 .0511 0.1871 .0387 0.1811 .0460 0.2163 .0432 0.2020
9 0.20 -.0009 0.0424 -.0008 0.0424 -.0004 0.0458 -.0003 0.0447
9 0.50 .0010 0.0458 .0008 0.0458 .0009 0.0480 .0005 0.0490
9 0.80 .0081 0.0714 .0169 0.0894 .0093 0.0742 .0189 0.0933
9 0.95 .0182 0.0775 .0197 0.0843 .0168 0.0806 .0116 0.0866
24 0.20 -.0001 0.0226 -.0001 0.0226 .0001 0.0225 .0001 0.0224
24 0.50 -.0006 0.0217 -.0006 0.0217 -.0007 0.0214 -.0007 0.0214
24 0.80 -.0010 0.0200 -.0010 0.0204 -.0009 0.0194 -.0009 0.0198
24 0.95 -.0090 0.0176 -.0002 0.0234 -.0086 0.0171 -.0010 0.0226

Table 4: Estimators of ρ; Design II-S; 5000 replications.

N = 500 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0012 0.0376 .0013 0.0387 .0022 0.0481 .0016 0.0452
4 0.50 .0011 0.0500 .0034 0.0591 .0045 0.0672 .0057 0.0724
4 0.80 .0098 0.0850 .0279 0.1219 .0143 0.1066 .0301 0.1327
4 0.95 .0259 0.1145 .0127 0.1141 .0224 0.1339 .0138 0.1256
9 0.20 .0001 0.0188 .0001 0.0188 -.0002 0.0197 -.0002 0.0197
9 0.50 -.0007 0.0199 -.0007 0.0201 -.0006 0.0210 -.0007 0.0211
9 0.80 .0007 0.0254 .0024 0.0317 .0009 0.0270 .0027 0.0333
9 0.95 .0060 0.0423 .0111 0.0520 .0045 0.0440 .0064 0.0524
24 0.20 . . . . . . . .
24 0.50 . . . . . . . .
24 0.80 . . . . . . . .
24 0.95 . . . . . . . .
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Table 5: Estimators of ρ; Design III-S; 5000 replications.

N = 100 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0138 0.1634 .0199 0.1828 .0172 0.1772 .0227 0.1825
4 0.50 .0360 0.2189 .0521 0.2508 .0393 0.2326 .0548 0.2567
4 0.80 .0518 0.2425 .0662 0.2604 .0455 0.2494 .0471 0.2585
4 0.95 .0520 0.2364 .0520 0.2396 .0499 0.2466 .0511 0.2387
9 0.20 -.0015 0.0678 -.0016 0.0678 .0000 0.0624 .0000 0.0624
9 0.50 -.0008 0.0775 -.0002 0.0806 .0003 0.0700 .0011 0.0728
9 0.80 .0183 0.1068 .0350 0.1311 .0091 0.0933 .0242 0.1187
9 0.95 .0169 0.1015 .0205 0.1082 .0121 0.0959 .0039 0.1034
24 0.20 .0013 0.0364 .0013 0.0364 .0007 0.0329 .0007 0.0328
24 0.50 -.0017 0.0351 -.0018 0.0351 -.0018 0.0302 -.0018 0.0302
24 0.80 -.0024 0.0308 -.0008 0.0334 -.0022 0.0263 -.0012 0.0283
24 0.95 -.0140 0.0261 -.0028 0.0307 -.0126 0.0224 -.0042 0.0268

Table 6: Estimators of ρ; Design III-S; 5000 replications.

N = 500 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0013 0.0608 .0020 0.0632 .0019 0.0693 .0021 0.0663
4 0.50 .0067 0.0917 .0166 0.1233 .0102 0.1020 .0187 0.1245
4 0.80 .0288 0.1400 .0462 0.1712 .0180 0.1378 .0291 0.1612
4 0.95 .0438 0.1584 .0312 0.1543 .0325 0.1631 .0249 0.1565
9 0.20 -.0009 0.0310 -.0009 0.0311 -.0001 0.0293 -.0000 0.0292
9 0.50 -.0003 0.0326 -.0003 0.0329 .0001 0.0310 .0002 0.0312
9 0.80 .0016 0.0454 .0100 0.0647 .0009 0.0408 .0083 0.0610
9 0.95 .0118 0.0612 .0178 0.0698 .0063 0.0562 .0091 0.0665
24 0.20 . . . . . . . .
24 0.50 . . . . . . . .
24 0.80 . . . . . . . .
24 0.95 . . . . . . . .
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Table 7: Estimators of ρ; Design I-NS; 5000 replications.

N = 100 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0048 0.1034 .0050 0.1039 .0104 0.1342 .0102 0.1319
4 0.50 .0265 0.1609 .0261 0.1600 .0401 0.2040 .0363 0.1967
4 0.80 .0572 0.2059 .0569 0.2035 .0522 0.2330 .0268 0.2152
4 0.95 .0442 0.1841 .0354 0.1780 .0516 0.2182 .0291 0.1985
9 0.20 -.0003 0.0436 -.0004 0.0436 -.0002 0.0480 -.0002 0.0480
9 0.50 -.0011 0.0469 -.0012 0.0469 -.0004 0.0520 -.0005 0.0520
9 0.80 .0113 0.0812 .0106 0.0806 .0136 0.0889 .0123 0.0877
9 0.95 .0201 0.0819 .0164 0.0806 .0098 0.0860 -.0006 0.0843
24 0.20 -.0053 0.0221 -.0051 0.0220 -.0055 0.0230 -.0052 0.0230
24 0.50 -.0053 0.0197 -.0050 0.0196 -.0055 0.0205 -.0052 0.0204
24 0.80 -.0069 0.0170 -.0065 0.0169 -.0072 0.0175 -.0068 0.0175
24 0.95 -.0125 0.0209 -.0122 0.0209 -.0129 0.0215 -.0125 0.0215

Table 8: Estimators of ρ; Design I-NS; 5000 replications.

N = 500 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0014 0.0424 .0014 0.0424 .0010 0.0520 .0009 0.0520
4 0.50 .0044 0.0640 .0044 0.0640 .0082 0.0831 .0078 0.0825
4 0.80 .0341 0.1296 .0319 0.1281 .0376 0.1473 .0155 0.1349
4 0.95 .0335 0.1166 .0290 0.1149 .0268 0.1342 .0044 0.1245
9 0.20 .0001 0.0190 .0001 0.0190 .0003 0.0207 .0003 0.0207
9 0.50 -.0005 0.0207 -.0005 0.0206 -.0005 0.0227 -.0005 0.0227
9 0.80 .0013 0.0311 .0013 0.0311 .0022 0.0356 .0021 0.0353
9 0.95 .0143 0.0525 .0128 0.0520 .0109 0.0547 .0028 0.0532
24 0.20 . . . . . . . .
24 0.50 . . . . . . . .
24 0.80 . . . . . . . .
24 0.95 . . . . . . . .
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Table 9: Estimators of ρ; Design III-NS; 5000 replications.

N = 100 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0155 0.1892 .0147 0.1881 .0174 0.1934 .0174 0.1895
4 0.50 .0329 0.2468 .0335 0.2456 .0343 0.2504 .0342 0.2449
4 0.80 .0408 0.2585 .0384 0.2550 .0351 0.2676 .0122 0.2522
4 0.95 .0465 0.2423 .0354 0.2371 .0615 0.2561 .0465 0.2377
9 0.20 -.0026 0.0714 -.0026 0.0714 -.0011 0.0663 -.0007 0.0656
9 0.50 .0015 0.0812 .0013 0.0812 -.0009 0.0755 -.0001 0.0762
9 0.80 .0161 0.1187 .0168 0.1192 .0118 0.1105 .0135 0.1105
9 0.95 .0127 0.1077 .0082 0.1072 .0060 0.1039 -.0032 0.1034
24 0.20 -.0061 0.0360 -.0055 0.0359 -.0052 0.0312 -.0047 0.0312
24 0.50 -.0094 0.0333 -.0086 0.0333 -.0082 0.0294 -.0076 0.0294
24 0.80 -.0133 0.0292 -.0123 0.0291 -.0107 0.0246 -.0100 0.0245
24 0.95 -.0200 0.0332 -.0193 0.0331 -.0183 0.0291 -.0174 0.0288

Table 10: Estimators of ρ; Design III-NS; 5000 replications.

N = 500 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0015 0.0742 .0015 0.0742 .0011 0.0787 .0012 0.0787
4 0.50 .0142 0.1229 .0143 0.1233 .0155 0.1285 .0155 0.1273
4 0.80 .0483 0.1794 .0460 0.1780 .0382 0.1808 .0166 0.1676
4 0.95 .0331 0.1591 .0280 0.1559 .0358 0.1643 .0182 0.1520
9 0.20 .0006 0.0322 .0006 0.0322 .0003 0.0302 .0004 0.0302
9 0.50 .0002 0.0357 .0002 0.0357 -.0001 0.0335 .0000 0.0335
9 0.80 .0058 0.0610 .0057 0.0607 .0042 0.0547 .0048 0.0553
9 0.95 .0127 0.0698 .0114 0.0692 .0089 0.0673 .0009 0.0666
24 0.20 . . . . . . . .
24 0.50 . . . . . . . .
24 0.80 . . . . . . . .
24 0.95 . . . . . . . .

46



Table 11: Estimators of ρ; Design IV-S; 5000 replications.

N = 100 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0121 .1327 .0172 .1523 .0000 .1386 -.0013 .1510
4 0.50 .0281 .1688 .0377 .1942 .0746 .2550 .0722 .2655
4 0.80 .0644 .1947 .0982 .2186 .2191 .3175 .2789 .3569
4 0.95 .0816 .1972 .0988 .2064 .1513 .2410 .1763 .2602
9 0.20 .0040 .0583 .0027 .0592 -.0003 .0640 -.0004 .0656
9 0.50 .0079 .0608 .0054 .0624 -.0013 .0678 -.0023 .0671
9 0.80 .0332 .0843 .0319 .0900 .0215 .0922 .0275 .1015
9 0.95 .0434 .0794 .0490 .0854 .0128 .0548 .0137 .0566
24 0.20 .0022 .0306 .0015 .0305 .0023 .0346 .0021 .0348
24 0.50 .0033 .0287 .0019 .0286 .0005 .0335 .0004 .0334
24 0.80 .0070 .0265 .0044 .0255 -.0009 .0277 -.0004 .0294
24 0.95 .0148 .0283 .0156 .0303 .0002 .0103 .0002 .0103

Table 12: Estimators of ρ; Design IV-S; 5000 replications.

N = 500 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0016 .0574 .0014 .0600 -.0048 .0583 -.0051 .0632
4 0.50 .0133 .0927 .0122 .0964 .0028 .0854 .0021 .0877
4 0.80 .0499 .1432 .0879 .1778 .2590 .3473 .3130 .3837
4 0.95 .0756 .1581 .1036 .1764 .0894 .1803 .1047 .1942
9 0.20 .0010 .0284 .0005 .0285 -.0014 .0377 -.0016 .0391
9 0.50 .0013 .0302 .0004 .0303 -.0028 .0337 -.0029 .0345
9 0.80 .0136 .0524 .0063 .0370 .0070 .0543 .0074 .0558
9 0.95 .0319 .0648 .0467 .0801 .0004 .0149 .0004 .0149
24 0.20 . . . . . . . .
24 0.50 . . . . . . . .
24 0.80 . . . . . . . .
24 0.95 . . . . . . . .
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Table 13: Estimators of ρ; Design IV-NS; 5000 replications.

N = 100 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 0.0210 0.152 0.0208 0.1513 0.0042 0.1838 0.0051 0.1797
4 0.50 0.0421 0.200 0.0407 0.1975 0.0905 0.2890 0.0877 0.2877
4 0.80 0.0786 0.214 0.0801 0.2114 0.2375 0.3297 0.2790 0.3557
4 0.95 0.0945 0.208 0.0991 0.2049 0.1633 0.2502 0.1860 0.2653
9 0.20 0.0121 0.062 0.0124 0.0624 0.0045 0.0742 0.0046 0.0721
9 0.50 0.0164 0.069 0.0167 0.0686 -0.0045 0.0768 -0.0043 0.0748
9 0.80 0.0445 0.098 0.0450 0.0985 0.0318 0.1095 0.0343 0.1118
9 0.95 0.0498 0.085 0.0507 0.0849 0.0122 0.0548 0.0134 0.0566
24 0.20 0.0065 0.0324 0.0065 0.0324 0.0019 0.0351 0.0019 0.0348
24 0.50 0.0057 0.0301 0.0058 0.0302 -0.0007 0.0350 -0.0005 0.0347
24 0.80 0.0109 0.0298 0.0111 0.0299 -0.0003 0.0290 0.0001 0.0305
24 0.95 0.0191 0.0328 0.0196 0.0331 0.0002 0.0104 0.0002 0.0104

Table 14: Estimators of ρ; Design IV-NS; 5000 replications.

N = 500 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0069 .0693 .0069 .0693 -.0056 .0735 -.0055 .0728
4 0.50 .0183 .1118 .0178 .1105 .0063 .1105 .0035 .1005
4 0.80 .0645 .1628 .0629 .1603 .2856 .3648 .3020 .3754
4 0.95 .0956 .1718 .0931 .1667 .0999 .1905 .1055 .1954
9 0.20 .0032 .0306 .0032 .0306 -.0008 .0406 -.0008 .0403
9 0.50 .0038 .0332 .0038 .0332 -.0024 .0371 -.0024 .0370
9 0.80 .0149 .0531 .0151 .0530 .0089 .0597 .0057 .0548
9 0.95 .0478 .0808 .0478 .0801 .0003 .0146 .0004 .0148
24 0.20 . . . . . . . .
24 0.50 . . . . . . . .
24 0.80 . . . . . . . .
24 0.95 . . . . . . . .
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Table 15: Estimators of ρ; Design V-S; 5000 replications.

N = 100 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0013 .0781 .0019 .0819 .0068 .1187 .0041 .1086
4 0.50 .0056 .1039 .0140 .1304 .0237 .1682 .0400 .1960
4 0.80 .0216 .1503 .0418 .1871 .0500 .2090 .1368 .2837
4 0.95 .0391 .1811 .0430 .1895 .0919 .2339 .1580 .2623
9 0.20 -.0009 .0400 -.0009 .0400 -.0009 .0436 -.0008 .0436
9 0.50 .0003 .0424 .0002 .0424 .0003 .0469 .0003 .0469
9 0.80 .0010 .0500 .0035 .0592 .0060 .0640 .0172 .0877
9 0.95 .0160 .0735 .0248 .0843 .0294 .0849 .0593 .1095
24 0.20 .0004 .0218 .0004 .0218 .0006 .0229 .0006 .0229
24 0.50 -.0001 .0206 -.0002 .0206 -.0001 .0212 -.0002 .0213
24 0.80 -.0019 .0180 -.0015 .0181 -.0020 .0189 -.0015 .0190
24 0.95 -.0053 .0141 -.0015 .0186 -.0053 .0148 -.0015 .0195

Table 16: Estimators of ρ; Design V-S; 5000 replications.

N = 500 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 -.0002 .0346 .0000 .0346 -.0005 .0458 -.0000 .0424
4 0.50 .0002 .0412 .0007 .0436 .0017 .0566 .0017 .0539
4 0.80 .0031 .0574 .0098 .0806 .0098 .0900 .0526 .1655
4 0.95 .0157 .1000 .0241 .1166 .0520 .1597 .1118 .2066
9 0.20 -.0001 .0174 -.0002 .0174 -.0002 .0193 -.0002 .0192
9 0.50 .0001 .0185 .0001 .0186 .0001 .0206 .0002 .0204
9 0.80 -.0000 .0209 .0000 .0214 .0003 .0237 .0006 .0258
9 0.95 .0046 .0349 .0074 .0427 .0092 .0440 .0503 .0920
24 0.20 . . . . . . . .
24 0.50 . . . . . . . .
24 0.80 . . . . . . . .
24 0.95 . . . . . . . .
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Table 17: Estimators of ρ; Design VI-S; 5000 replications.

N = 100 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0071 .1490 .0100 .1606 .0164 .1783 .0226 .1857
4 0.50 .0214 .1926 .0366 .2241 .0360 .2232 .0715 .2740
4 0.80 .0375 .2245 .0583 .2506 .0597 .2470 .1526 .3156
4 0.95 .0503 .2335 .0610 .2421 .0909 .2604 .1475 .2818
9 0.20 -.0001 .0671 -.0001 .0671 -.0005 .0624 -.0003 .0624
9 0.50 .0001 .0735 .0002 .0742 -.0009 .0678 -.0006 .0686
9 0.80 .0098 .0943 .0236 .1170 .0067 .0849 .0268 .1192
9 0.95 .0247 .0970 .0342 .1077 .0258 .0964 .0513 .1175
24 0.20 -.0008 .0359 -.0008 .0359 -.0008 .0327 -.0008 .0327
24 0.50 -.0016 .0348 -.0016 .0348 -.0010 .0300 -.0010 .0300
24 0.80 -.0025 .0296 -.0015 .0311 -.0012 .0258 -.0008 .0267
24 0.95 -.0126 .0251 -.0035 .0291 -.0099 .0200 -.0024 .0248

Table 18: Estimators of ρ; Design VI-S; 5000 replications.

N = 500 σ2
µ = 1 REUQMLE FEUQMLE REWQMLE FEWQMLE

T ρ bias RMSE bias RMSE bias RMSE bias RMSE
4 0.20 .0010 .0592 .0013 .0608 .0002 .0648 .0007 .0624
4 0.50 .0027 .0755 .0054 .0866 .0055 .0860 .0123 .1105
4 0.80 .0144 .1145 .0332 .1543 .0177 .1249 .0945 .2263
4 0.95 .0337 .1562 .0370 .1667 .0715 .1918 .1379 .2369
9 0.20 .0000 .0303 .0000 .0303 .0004 .0289 .0004 .0287
9 0.50 .0002 .0323 .0002 .0324 .0004 .0294 .0004 .0295
9 0.80 .0009 .0377 .0020 .0416 .0013 .0367 .0059 .0528
9 0.95 .0130 .0608 .0210 .0735 .0142 .0599 .0578 .1034
24 0.20 . . . . . . . .
24 0.50 . . . . . . . .
24 0.80 . . . . . . . .
24 0.95 . . . . . . . .
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