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Abstract

In this paper we introduce a panel quantile estimator for count data with individual heterogeneity,

by constructing continuous variables whose conditional quantiles have a one-to-one relationship with

the conditional count response variable. The new method is needed as a result of the increased

availability of Big Data, which allows us to track event counts at the individual level for a large

number of activities from webclicks and retweets to store visits and purchases. At the same time,

the presence of many different subpopulations in a large dataset requires us to pay close attention

to individual heterogeneity. In this paper, we propose a penalized quantile regression estimator

with fixed effects and investigate the conditions under which the slope parameter estimator is

asymptotically Gaussian. We investigate solutions to the computational challenges resulting from

the need to estimate tens of thousands of parameters in a Big Data setting and caution against

penalizing in models with substantial zero inflation and endogenous covariates by using a series of

Monte Carlo simulations. We present an empirical application to individual trip counts to the store

based on a large panel of food purchase transactions.
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1. Introduction

Event counts, or number of times an individual event occurs, are standard in empirical microeco-

nomics. While research on count data has a long and rich tradition with numerous theoretical and

applied studies across statistically focused disciplines (Cameron and Trivedi, 2013), the increased

availability of Big Data opens up new challenges and possibilities. The key advantage of panel count

data is that it offers the possibility of tracking a large number of counts at the individual level that

are observed over a long period of time, leading to richer models that require more general forms

of heterogeneity. The use of massive count data sets is naturally associated with the proposal of

new computational frameworks (see, e.g., Taddy, 2013 and Taddy, 2014). This paper makes two

contributions to the development of quantile regression methods for panel count data. First, we

propose a semiparametric panel model for count data with individual heterogeneity and introduce

penalized regression estimators. Second, an essential algorithm for Big Data settings and a simple

inferential approach that takes advantage of the sparsity of the design are proposed. The modeling

approach is then applied to an empirical application to search and choice behavior using detailed

individual transaction data from grocery stores.

Numerous papers have proposed parametric and moment-based approaches for longitudinal count

data including Hausman, Hall and Griliches (1984), Wooldridge (1999), Blundell, Griffith and

Windmeijer (2002), and more recently, flexible models for unobserved heterogeneity are proposed

by Gurmu, Rilstone and Stern (1999) and Burda, Harding and Hausman (2012). Quantile regres-

sion, originally introduced by Koenker and Bassett (1978), and quantile for counts, developed by

Machado and Santos Silva (2005), are becoming increasingly popular in applied microeconomic

research and offer a semiparametric alternative approach to standard methods. The extension of

quantile methods to panel data is investigated in a series of papers by Koenker (2004), Lamarche

(2010), Galvao (2011) and Kato, Galvao and Montes-Rojas (2012). Galvao, Lamarche, and Lima

(2013) study the estimation of a censored panel data model. Moreover, alternative approaches and

models are studied in Chernozhukov, Fernández-Val, Hahn, and Newey (2013) and Harding and

Lamarche (2014), among others. These papers deal exclusively with the case of continuous response

variables. This highlights the need for quantile panel methods suitable for the analysis of count

data.

This paper introduces an innovative quantile regression approach to model heterogeneity in panel

count data, while providing flexibility relative to standard parametric models. Standard approaches

were developed with a continuous outcome variable in mind and suffer from a number of limitations
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when applied to count data. For example, Koenker and Bassett (1978) develop a quantile regression

estimator for the τ -th quantile function conditional on a vector of independent variables x ∈ X ⊂
Rp, QY (τ |x), that is consistent and asymptotically normally distributed. Inference procedures are

also develop under sufficient conditions including that the conditional probability density function

is continuous at the conditional quantile and have continuous derivatives. These conditions are

violated if the response variable Y is a count variable. In a different context, valid asymptotic

inference is possible by adopting a specific form of jittering proposed by Stevens (1950) and later

extended by Machado and Santos Silva (2005). This paper extends the approach of Machado and

Santos Silva (2005) to panel data by constructing continuous variables whose conditional quantiles

have a one-to-one relationship with the count response variable conditional on observables and

unobservables.

The main challenge in the estimation of quantile counts for panel data is the combination of non-

smoothness of the objective function and individual specific heterogeneity potentially correlated

with the independent variables. The necessary smoothness is achieved by adding a uniform random

variable to the count variable but omitting unobserved individual heterogeneity can lead to lack of

identification of the conditional quantile function of the count variable. Our investigation shows

that existing cross-sectional approaches that also employ jittered samples can be severely biased

in small samples. We propose an ℓ1-penalized quantile regression estimators for panel count data

explicitly allowing for individual heterogeneity and we investigate the conditions under which the

slope parameter estimator is asymptotically Gaussian. The proposed estimator shows desirable

small sample properties in a class of count models with random and fixed individual effects.

We present an application to modeling consumer trip counts. In both real and virtual retail

environment consumer choice begins with a visit to the store. Modeling the number of store

visits is an important measure of consumer search and has important implications in a number of

areas from marketing to urban planning and even public health. At a basic level, trip counts are

determined by observable socio-demographics and unobserved attributes such as the opportunity

cost of time. More recently, and in light of the Great Recession, economists have also asked what role

local economic environments play in driving consumption behavior. In our example, we extend the

analysis of trip counts by also studying the effect of house prices and unemployment on shopping trip

behavior. It has been argued that both housing prices and unemployment may affect consumption

(see, e.g., Campbell and Cocco, 2007, Attanasio et al., 2009), but the analysis is typically based on

synthetic panels, which are constructed by the methodology introduced in Browning et al. (1985)

and Deaton (1985) to obtain a panel of time series of cross-sectional data from a specific population.
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In contrast with existing studies, we can track individual households purchases per month over a

period of five years, avoiding potential biases arising from the use of pseudo-panels. Using data

from the National Consumer Panel, we estimate a panel quantile count model for the number of

shopping trips and number of shopping days. We find that the proposed method gives different

shopping profiles relative to other quantile methods and the classical conditional Poisson estimator

with fixed effects. While we find evidence of both demographic gradients and a wealth channel

impacting search behavior at the upper quantiles, the results are also surprising in that they reveal

a much larger role for unobserved preference heterogeneity in explaining the observed variation than

we might have a priori expected. This suggests that marketing strategies based on other strategies

than demographic profiling are likely to be more successful in developing predictive analytics of

consumer behavior.

The next section introduces the model for count data and the corresponding estimator. In Section

3, we investigate the small sample behavior of the proposed approach in relation to other methods.

Section 4 demonstrates how the estimator can be used in an empirical application using a large

number of individual transactions. Section 5 offers a few concluding remarks.

2. Panel quantile for count data

Let {(yit,x′
it, αi)} be a sequence of identically and independently distributed (i.i.d.) random vari-

ables for subject i at time t with i = 1, . . . , N and t = 1, . . . , Ti. The variable yit denotes a discrete

count variable with support on the set of non-negative integers, N0, and has conditional probabil-

ity equal to P (yit = k|xit, αi) for k = {0, 1, ..., y}. The vector xit = (x′
1,it,d

′
1,it,x

′
2,i,d

′
2,i)

′ ∈ Rp

denotes a p-dimensional vector of independent variables, where x1,it is a p1-dimensional vector of

time-varying continuous variables, d1,it is a k1-dimensional vector of time-varying discrete variables,

x2,i is a p2-dimensional vector of time invariant continuous variables, and d2,i is a k2-dimensional

vector of time invariant discrete variables. The vector xit also includes an intercept. The variable

αi measures latent heterogeneity potentially dependent on the columns of the vector of independent

variables, xit. Moreover, we denote by QYit
(τ |xit, αi) the τ -th quantile of the conditional distribu-

tion of yit given xit and αi, where τ is a given quantile in the interval (0, 1). The quantile function

is defined as QY (τ |x, α) = inf{y : Pr(Y ≤ y|x, α) ≥ τ}.
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2.1. Model and assumptions

This section introduces the model and assumptions associated with our panel quantile regression

model for count data. Although the number of time series observations can vary with i as in

the empirical application of the method described in Section 4, for simplicity in exposition, the

remaining part of this section focuses in the case of Ti = T for all i. Consider the following

specification:

h(zit, τ) = x′
itβ + αi + vit,(2.1)

zit = yit + uit,(2.2)

where h(·) is a known monotone transformation, τ is a quantile of the conditional distribution of

the count variable, vit is an error term, zit is a continuous variable, and uit is a uniform random

variable in [0, 1). Equation (2.1) states that a known monotone function achieves linearity in terms

of the parameter of interest β and unobserved heterogeneity αi. If h(·) is equal to the logarithmic

transformation, this model contains the case where latent individual heterogeneity exp(αi) enters

multiplicatively in the equation. In equation (2.2), the continuous variable zit is constructed by

adding to the count variable, yit, a random variable uit which is uniformly distributed in the interval

[0, 1). Work by Stevens (1950) and Pearson (1950) lead to a nowadays conventional idea expressed

in equation (2.2) that has a long tradition in Statistics since the discussion by Anscombe to the

Royal Statistical Society (1948). We consider the following assumption:

ASSUMPTION 1. The variable uit is distributed as uniform in [0, 1) and is independent of the

count variable yit and {(x′
it, αi, vit)} ∀(i, t). The variables {vit} are i.i.d. for each i and all t ≥ 1.

Assumption 1 is standard in the literature on quantile for counts (Machado and Santos Silva (2005)

and Hong and He (2010)). The use of a uniform distribution is for convenience, because it allows

algebraic and computational simplifications. This assumption can be relaxed by considering any

continuous distribution with support on [0, 1) and density function bounded away from 0 and ∞.

Note that a different choice of the jittering distribution leads to a different transformation of z

without changing the distribution of h(z). The second part of Assumption 1 makes easier to find

a consistent and asymptotically normal estimator for β (see, e.g., Galvao, Lamarche and Lima

(2013)). Note that the distribution of the vit’s is left unspecified.

As discussed before, the assumption on the distribution of the random variable uit can be relaxed

but this formulation leads to simplifications in the derivation of conditional quantile functions. For
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instance, the conditional distribution of zit conditional on xit and αi can be written as:

P (zit < z|xit, αi) = P (yit < y|xit, αi) + P (uit < u|xit, αi)P (yit = y|xit, αi)(2.3)

= P (yit < y|xit, αi) + uP (yit = y|xit, αi)(2.4)

=

y−1
∑

k=0

P (yit = k|xit, αi) + uP (yit = y|xit, αi).(2.5)

Denoting y ≡ QY (τ |x, α) and u ≡ QZ(τ |x, α) −QY (τ |x, α), we obtain,

τ =

y−1
∑

k=0

P (yit = k|xit, αi) + (QZit
(τ |xit, αi)−QYit

(τ |xit, αi))P (yit = QYit
(τ |xit, αi)|xit, αi),

or alternatively, the conditional quantile function of the continuous variable can be expressed as,

(2.6) QZit
(τ |xit, αi) = QYit

(τ |xit, αi) +
τ −∑QYit

(τ |xit,αi)−1

k=0 P (yit = k|xit, αi)

P (yit = QYit
(τ |xit, αi)|xit, αi)

,

which establishes a relationship between the conditional quantile function of the continuous random

variable and the conditional quantile function of the count variable. Equation (2.6) is a panel data

version of equation (1) in Machado and Santos Silva (2005) and a general version of the model

described in Winkelmann (2008, p. 200).

The quantiles of the count variable are identified by the one-to-one relationship with the quantiles

of the continuous variable. Note that because uit ∈ [0, 1), we have that,

(2.7) yit − 1 ≤ yit − 1 + uit < yit,

or, by equation (2.2),

(2.8) yit − 1 ≤ zit − 1 < yit.

Because the conditional and unconditional quantile functions Q(τ) := F−1(τ) are non-decreasing,

equation (2.8) implies QYit
(τ)− 1 ≤ QZit

(τ)− 1 < QYit
(τ) and

(2.9) QYit
(τ |xit, αi)− 1 ≤ QZit

(τ |xit, αi)− 1 < QYit
(τ |xit, αi).

Therefore, in our panel quantile count model, we have,

(2.10) QYit
(τ |xit, αi) = ⌈QZit

(τ |xit, αi)− 1⌉ ,

where ⌈·⌉ is the ceiling function defined as ⌈y⌉ = min{x ∈ Z|x ≥ y} where Z denotes the set of

integers and y is a real number.
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Remark 1. It is immediately apparent that the omission of unobserved heterogeneity in the con-

ditional quantile function of the continuous variable zit, say e.g. QZit
(τ |xit), might lead to failure

of identification of the conditional quantile function of a panel count variable Yit which is defined

in equation (2.10).

The advantage of panel count data is that provides a framework for addressing unobserved het-

erogeneity αi in the conditional quantile of the count variable QYit
(τ |xit, αi). In cross-sectional

models, it is known than the presence of individual heterogeneity distributed independently of the

covariates implies over-dispersion, and therefore, it is possible to estimate consistently regression

parameters even if the model is misspecified. Practitioners can apply for instance Poisson regres-

sion using robust standard errors. In this paper, we consistently estimate QYit
(τ |xit, αi) without

requiring the independence assumption.

Naturally βj(τ) = 0 implies no dependence between the j-th covariate xj,it ∈ R and the conditional

quantile function QY (τ |·) in equation (2.10). Note however that it is possible that βj(τ) 6= 0 and

the conditional quantile QY (τ |·) is not influenced by changes in xj,it. Moreover, it is possible that

αi0 = 0 and αh0 6= 0 and yet the conditional quantile function QYit
(τ |·) = QYht

(τ |·) at the same

quantile τ when x = xit = xht. On the other hand, if αi0 = 0 and αh0 6= 0, the conditional quantile

QZit
(τ |·) is expected to be different than QZht

(τ |·) even when x = xit = xht. This case is similar

to the analysis of the effect of a change in xj,it on QZit
(τ |·) if βj(τ) 6= 0.

The following assumption is also considered:

ASSUMPTION 2. The monotone transformation h(·) is known and the conditional quantile

function of the continuous dependent variable is equal to,

(2.11) Qh(Zit,τ)(τ |xit, αi) = x′
itβ(τ) + αi(τ),

where τ ∈ (0, 1) and αi(τ) is a scalar individual effect for each i. Moreover, at least one βj(τ)

associated with the vector of continuous variables (x′
1,it,x

′
2,i) ∈ X p1 × X p2 ⊂ R

p1+p2 is non-zero

and there is 1 ≤ p1 + p2 ≤ p − 1 satisfying that P ((x′
1,it,x

′
2,i) ∈ C) = 0 for any countable subset

C ∈ R
p1+p2 .

Assumption 2 restricts the panel conditional quantile functions to be single-index models of the

form: QZ(τ |x, α) = h−1(x′β(τ) + α(τ), τ), where h−1(·) denotes the inverse of the monotone

transformation h(zit, τ). The quantile of the continuous variable z depends on an individual specific

effect α(τ) that is indexed by quantiles as in the panel quantile literature (e.g., Harding and
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Lamarche 2009, Galvao et al. (2013), among others). In case that αi(τ) = αi for all τ ’s, the quantile

function (2.11) can be written as x′β(τ)+α, where individual heterogeneity is a location shift in the

sense of Koenker (2004). We discuss estimation of this alternative model in the following Section

2.2. The second part of Assumption 2 is important for the natural requirement that βj(τ) 6= 0 is

equivalent to the conditional quantile QY (τ |·) depending on the j-th covariate xj,it ∈ R. Under this

assumption, there are values of the independent variables, which includes continuous and discrete

covariates, for which βj(τ) 6= 0 implies that QY (τ |·) depends on xj,it. As in Manski (1985) and

Machado and Santos Silva (2005), we require that at least one regressor is continuous and a large

support assumption for the continuous variable holds.

2.2. The proposed methods

This paper investigates the estimation of panel quantile regression models for count data. The

estimation of the slope parameter, the conditional quantile function of the panel count variable,

and the marginal effect of covariates on the conditional quantile of the response variable can be

estimated considering the following steps:

Step 1: Let α := (α1, ..., αN ). For z
(l)
it = yit+u

(l)
it with l = 1, . . . ,m, estimate θ(τ) = (β(τ)′,α(τ)′)′

by the following average jittering penalized estimator for a model with fixed effects,

(2.12) θ̂(τ, λ) =
1

m

m
∑

l=1

θ̃(l)(τ, λ),

where λ is a tuning parameter and,

(2.13) θ̃(l)(τ, λ) = argmin
θ∈Θ

N
∑

i=1

T
∑

t=1

ρτ (h(z
(l)
it , τ)− x′

itβ − αi) + λ
N
∑

i=1

ρτ (αi),

where ρτ (u) = u(τ − I(u < 0)) is the quantile regression loss function of Koenker and Bassett

(1978). We denote the fixed effects estimator for count data as the limiting case θ̂(τ) := θ̂(τ, λ)

when λ→ 0.

The last term in definition (2.13) is introduced to improve the performance of the fixed effects

estimator in Big data problems in which the dimensionality of the model, here proportional to

N , can be large. It should be noticed that the penalty is different than the lasso-type penalty

employed in panel data quantile regression (e.g., Koenker (2004), Harding and Lamarche (2014),

among others). It represents a rather minor modification of existing routines and replaces the

right hand side of the equality constraint in the dual formulation of the minimization problem by

(1 − τ)(Z ′ιNT + λιN ), where Z is a NT × N incidence matrix of individual effects and ιN is a
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N × 1 vector of ones. In Big Data settings, this modification allows us to estimate and penalize

individual specific distributional effects.

Under the assumption that an individual effect is a location-shift for the conditional distribution of

the count variable, an alternative more efficient penalized estimator can be alternatively considered:

Step 1’ (Optional): Let τ = {τ1, τ2, ..., τJ} and J is the number of quantiles to be estimated.

Estimate θ(τ ) = (β(τ )′,α(τ )′)′ by,

(2.14) θ̂(τ , λ) = argmin
θ∈Θ

J
∑

j=1

N
∑

i=1

T
∑

t=1

ωjρτj (h(zit, τj)− x′
itβ(τj)− αi) + λ

N
∑

i=1

|αi|,

where ωj is a relative weight given to the j-th quantile and
∑

i |αi| is a penalty term. Koenker

(2004) points out that the choice of the weights, ωj, and the associated quantiles τj, is somewhat

analogous to the choice of discretely weighted L-statistics, as for example in Mosteller (1946). An

alternative less efficient, yet practical choice is to ignore the potential gains and estimate models

with equal weights defined as ωj = 1/J .

Step 2: The τ -th quantile of the count variable, QYit
(τ |xit, αi), can be estimated as,

Q̂Yit
(τ |xit, αi) =

⌈

Q̂Zit
(τ |xit, αi)− 1

⌉

(2.15)

=
⌈

h−1
(

x′
itβ̂(τ, λ) + α̂i(τ, λ), τ

)

− 1
⌉

,(2.16)

where as before ⌈·⌉ denotes the ceiling function.

Step 3: The partial effect of the independent variable xj on the conditional quantile function of

the count variable, QYit
(τ |xit, αi), can be estimated as follows:

(2.17) ∆jQ̂Yit
(τ |·, x1j , x0j ) = Q̂Yit

(τ |·, x1j )− Q̂Yit
(τ |·, x0j ),

where the quantile function is evaluated at fixed levels of the covariates and ∆xj + x0j = x1j .

In conditional mean Poisson models, the slope parameter β can be consistently estimated for fixed

T , as long as N → ∞. Maximum likelihood (ML) estimation of a Poisson model with multiplicative

fixed effects, after analytical expressions of αi are concentrated in the likelihood function provided

that the independent variables are strictly exogenous, do not exhibit the problem of incidental

parameters. This result is true if both β and αi are jointly estimated by ML. In fact, consistent

estimates can be obtained by running standard Poisson cross-sectional regression on a transformed

dependent variable on xit and a series of incidence vectors for the individual effects. The situation



10

might be different in a negative binomial model with fixed effects, although Greene (2004) suggests

that incidental parameters might not impose large biases.

In panel quantile models, it is expected that incidental parameters might create biases when T is

small, although Galvao, Lamarche and Lima (2013) shows that the performance of panel quantile

methods rapidly improve under moderate T . (The analysis of incidental parameters in quantile

regression is rigorously discussed in Kato, Galvao and Montes-Rojas (2012)). This paper however

is primarily motivated by the analysis of Big data, a situation practitioners face in the use of click,

tweet or scan data under the expectation that T is large.

With these caveats in mind, we will proceed as follows. Our derivation of large sample results in

the next section relies under the assumption that both indexes go jointly to infinity. In Section 3,

we investigate the finite sample performance of the approach in cases with a small number of time

series observations T relative to the number of cross-sectional units N . Finally, in the application,

we consider a panel data set for households making purchases over (on average) 44 months, reaching

72 months for a significant set of consumers.

2.3. Large sample properties

We analyze the large sample properties of the proposed approach. Let QZit
(τ |·) := QZit

(τ |xit, αi) =

h−1(x′
itβ(τ) + αi(τ), τ) and QYit

(τ |·) := QYit
(τ |xit, αi) = ⌈QZit

(τ |·) − 1⌉.

ASSUMPTION 3. The discrete variable yit has support on the set of non-negative integers, N0,

and its conditional probability density function, fYit
, is bounded away from zero and infinity at the

conditional quantile function QYit
(τ |xit, αi).

ASSUMPTION 4. The variables αi’s are exchangeable, identically, and independently distributed

with zero conditional quantile and distribution function G with continuous densities g uniformly

bounded away from 0 and ∞, with bounded derivatives g′ everywhere.

ASSUMPTION 5. There exist positive definite matrices V0, V1, and D, such that

V0(λ) = lim
T,N→∞

1

TN
τ(1− τ)

{

X ′MMX + λ2X ′P ′PX
}

,

V1(λ) = lim
T,N→∞

1

TN

{

X ′M(τ(1 − τ)I −Υ)MX + λ2τ(1− τ)X ′P ′PX
}

,

D(λ) = lim
T,N→∞

1

TN

{

X ′M ′ΦMX + λX ′P ′ΨPX
}

,
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where M = I − P , P = Z(Z ′ΦZ)−1Z ′Φ, Z is an incidence matrix of dimension NT × N ,

Φ = diag(fh(Zit,τ)(Qh(Zit,τ)(τ |·)), Ψ = diag(g(0)), and

Υ = diag (fYit
(QYit

(τ |·)) ((QZit
(τ |·)−QYit

(τ |·))(1 −QZit
(τ |·) +QYit

(τ |·)))) .

ASSUMPTION 6. The variable xit ∈ X has a bounded support satisfying max ||xit||/
√
TN → 0.

Moreover, λmin (E(χM (xit)χM (xit)
′)) > 0 and λmin (E(χP (xit)χP (xit)

′)) > 0 where λmin is the

smallest eigenvalue and χM (·) and χP (·) denote known transformations of the independent variables

based on M and P .

Condition 3 is similar to Assumption A1 in Machado and Santos Silva (2005). It represents a

slightly modified version of the standard quantile regression condition on the density fYit
evaluated

at a conditional quantile. The standard assumption on the continuity of the density conditional on

independent variables guarantees a well-defined asymptotic behavior of the quantile regression esti-

mator (see Koenker 2005). The zero quantile Assumption 4 is similar to the one used in Lamarche

(2010) and it is possible to relax it as shown in Harding and Lamarche (2014) and in Corollary 2

below. The condition however is convenient to decompose the penalty term using Knight’s identity

(Koenker 2005). Assumption 5 is standard and is used to invoke the Lindeberg-Feller Central Limit

Theorem. Lastly, Assumption 6 ensures that the conditional density is continuous almost for every

realization of the independent variable xit and it allows the finite-dimensional convergence of the

objective function.

The following result is important for inference in panel count quantile regression models:

THEOREM 1. Under conditions of 1-6, provided that there exists a constant c such that N c/T →
0 and that λT /

√
T → λ ≥ 0, the estimator for the slope coefficient over m-jittered samples is,

√
NT (β̂(τ, λ)− β(τ)) N (0,D(λ)−1B(λ)D(λ)−1),

where B(λ) = V0(λ)/m+ (m− 1)V1(λ)/m.

Conditional on λ, it can be shown that the average-jittered estimator β̂(τ, λ) is more efficient that

the jittered estimator β̂(τ, λ) obtained by setting m = 1. The next result derives the covariance

matrix of the proposed estimator when the number of jittered samples m tends to infinity.

COROLLARY 1. Under the conditions of Theorem 1, when m → ∞, the average-jittered esti-

mator for the slope coefficient, β̂(τ, λ), is asymptotically normal with mean β(τ) and covariance

matrix, D(λ)−1V1(λ)D(λ)−1.
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Although shrinkage of the individual effects offers statistical and computational advantages in

Big Data problems, it is possible to obtain an asymptotic distribution centered at zero without

Assumption 4. The asymptotic distribution of the fixed effects quantile regression estimator for a

count panel model is presented in the following result:

COROLLARY 2. Under Assumptions 1, 2, 3, 5, and 6, when λT /
√
T → λ = 0, provided that

there exists a constant c such that N c/T → 0, the fixed effects estimator for the slope coefficient,

β̂(τ), is asymptotically normal with mean β(τ) and covariance matrix D−1BD−1, where B =

V0/m+ (m− 1)V1/m.

2.4. Implementation issues and Sparsity-based Estimation

Sparsity has recently been argued to represent realistic features of economic problems and statistical

models (see, e.g., Gabaix 2014, Belloni and Chernozhukov 2011, Belloni, Chen, Chernozhukov and

Hansen 2012). Examples are consumers making online search and choice decisions and practitioners

estimating models with a large number of independent variables. The approach developed in this

paper overcomes the main problem of extending quantile methods for panel count models and this

section discusses important implementation issues.

The distribution function of the count variable is naturally non-continuous and therefore the quan-

tiles of the count variable, QYit
(τ |xit, αi), cannot be modeled as a continuous function of the

independent variable xit. We have defined a continuous variable zit = yit + uit, which has quantile

functions, QZit
(τ |·) = τ/p0 if τ < p0 and QZit

(τ |·) = 1 + (τ − p0)/p1, if p0 < τ < p1, where

the probability pk = P (Yit = k) for k = 0, . . . ,K. The quantile function of a continuous variable

imposes a restriction that the quantile τ cannot be smaller than p0. This condition can be imposed

by considering a simple extension to panel data of the conditional quantile function introduced in

Machado and Santos Silva (2005),

(2.18) QZit
(τ |xit, αi) = τ + h−1(x′

itβ(τ) + αi(τ)).

In Big data problems, the number of groups or subjects included in equation (2.18), here denoted

by αi, can be very large. For instance, the application considered in Section 4 requires us to

estimate a total number of 41,804 parameters. A sparse incidence matrix of individual effects, Z,

of dimension NT × N is large with NT = 1, 820, 790 and N = 41, 779. Basic manipulations and

calculations are handled in two stages. We first reduce the computational burden by storing data

in the standard triplet form using the Matrix library developed by Bates and Maechler (2014) and
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the SparseM library in Koenker’s (2014) R package quantreg. This is a relatively simple task as

we only need to record the row and column numbers and value of the indicator for the individual

effects or nonzero entries. We then use the sparse design matrices while employing panel quantile

regression codes. As shown in Figure 2.1, the proposed algorithm leads to significant improvements

of existing panel quantile methods and it appears to be particularly attractive to overcome the

difficulties of high-dimensional panel quantile regression.4
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Figure 2.1. Speed and computational cost of alternative sparse quantile panel
approaches. Panel quantile is based on available algorithms and sparsity-based
panel count denotes the implementation of the estimator proposed in this paper.
Mb denotes Megabytes.

4The figure presents results based on estimating a linear quantile regression model with N individual effects
ranging from 500 to 4,000 and T = 48. The model also includes a slope parameter. To mimic the situation
practitioners face when they analyze data, the model was estimated using R version 3.0.1 installed on a Dell
Optiplex 7010 workstation which has a i5 Quad Core 3.4GHz processor and 16GB RAM.
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In terms of estimation of the model and the standard errors of the fixed effects estimator employed

in Section 4, we proceed similarly than Machado and Santos Silva (2005) and Winkelmann (2006)

adopting the logarithmic transformation,

h(Zit, τ) =

{

log(zit − τ) for zit > τ

log(ǫit) for zit ≤ τ,

where Qlog(Zit,τ) = x′
itβ(τ)+αi(τ). Let Q̂Zit

:= τ +exp(x′
itβ̂(τ)+ α̂i(τ)), ξit(τ) := x′

itβ(τ)+αi(τ),

and fit := (Φ)it = fh(Zit,τ)(Qh(Zit,τ)(τ |·)). The matrices V0 and V1 can be estimated considering

the following estimators:

V̂0 =
1

TN

N
∑

i=1

T
∑

t=1

(τ − I(h(Zit, τ) ≤ ξ̂it))
2(xit − x̃i)f̂it(ξ̂it)(xit − x̃i)

′,

V̂1 =
1

TN

N
∑

i=1

T
∑

t=1

(

τ2 + (1− 2τ)I(yit ≤ Q̂Zit
− 1) + (Q̂Zit

− yit)I(Q̂Zit
− 1 < yit ≤ Q̂Zit

)
)

(Q̂Zit
− yit − 2τ)(xit − x̃i)f̂it(ξ̂it)(xit − x̃i)

′,

where f̄i = T−1
∑

t f̂it and x̃i = (T f̄i)
−1

∑T
t=1 f̂itxit. It is important to note that QZ is simply

estimated by using panel quantile methods on a transformed dependent variable, therefore the

estimation of fit(ξit(τ)) simply require the use of standard quantile regression methods (see, e.g.,

Koenker (2005), Chapter 3). The nuisance parameters fit(ξit(τ)) can be estimated for i.i.d. and

non-i.i.d. models considering residuals ûit(τ) := h(Zit, τ)−x′
itβ̂(τ)− α̂i(τ). Lastly, the practitioner

can specify λ > 0 and the covariance matrix can be similarly estimated by adding a penalty term

and estimating the density of the individual effects under the requirement that α̂i(τ) consistently

estimates αi(τ) as N and T tend to infinity.

Lastly, the approach followed to estimate D represents a natural extension of Machado and Santos

Silva (2005) applied to our panel model with fixed effects. We consider,

D̂ =
1

TN

N
∑

i=1

T
∑

t=1

exp(ξ̂it(τ))I(FNT (Q̂Zit
) ≤ zit ≤ FNT (Q̂Zit

) + 1)(xit − x̃i)f̂it(ξ̂it)(xit − x̃i)
′,

where for a properly defined bandwidth cNT ∈ (0, 1/2) satisfying cNT = o(1) as N,T → ∞ and

w = w − ⌊w⌋ with ⌊.⌋ defined as the floor function, and

FNT (w) =











⌊w⌋ − 1/2(1 + w/cNT ) if w < cNT and w ≥ 1,

⌊w⌋ if cNT ≤ w < 1− cNT or w > 1,

⌊w⌋ + 1/2(1 + (w − 1)/cNT ) if w > 1− cNT .

In the empirical section, we adopt cNT = 0.5 ln(ln(NT ))/
√
NT .
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The estimation of V0, V1 andD relies on concentrating the Bahadur representation of the individual

effects in the objective function but one can directly estimate the covariance matrix of the fixed

effects estimator by replacing MX by [X
...Z] in Assumption 5. Naturally, this procedure represents

another important implementation issue. For instance, the covariance matrix for the count fixed

effects estimator in the empirical section is 41, 804× 41, 804 and to obtain the covariance matrix it

is required to invert several matrices of large dimensions. The following proposition facilitates the

estimation and construction of the covariance matrix. Let L be a p +N × p + N matrix, L11 be

a p× p sub-matrix, L12 a p ×N sub-matrix, L21 a N × p submatrix, and L22 be a N ×N sparse

diagonal matrix. This natural ordering is associated with ordering methods considered in other

sparse problems in linear systems (see, e.g., Saad 2003 and Koenker 2004).

PROPOSITION 1. Let L and S be matrices of dimension p + N . Then, the p × p covariance

matrix of β(τ) is (L−1SL−1)11 = W−1
11 H11W

−1
11 where W11 = L11 − L12L21 and H11 = S11 −

L12S21 −L21S12 +L12S22L21.

The previous result allows for efficient estimation of potentially large sparse covariance matrices

and do not necessarily rely on concentrating the Bahadur representation of the individual effects

as in Theorem 1 and Corollary 2. The proposal is to trivially reduce the computational burden by

avoiding to invert a large N ×N matrix. We illustrate the use of this procedure in Section 4.

3. Monte Carlo

In this section, we report the results of several simulation experiments designed to evaluate the

performance of the method in finite samples. We generate the dependent variable using the following

model:

µit = exp(β0 + β1xit + β2αi),(3.1)

xit = π0 + π1αi + uit,(3.2)

uit ∼ N (0, σ2u),(3.3)

where σ2u = β0 = 1, π0 = 0 and the parameter of interest β1 = 0.5. Multiplicative unobserved het-

erogeneity is denoted by vi = exp(αi) and it is assumed to be drawn from the Gamma distribution

and the Gaussian distribution.

We consider different distributions for the count variable yit. In Table 3.1, the counts are Poisson

random variables with conditional mean µit and vi = exp(αi) ∼ Γ(1, 1). The table also includes
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results for the case that counts yit’s are negative binomial random variables with mean µit and

variance µit+0.5µ2it. The distribution of unobserved heterogeneity αi in the negative binomial case

is i.i.d. Normal with mean 0 and variance σ2α = 1. Therefore, the distribution of vi is lognormal

with mean exp(σ2α/2) and variance exp(σ2α/2)(exp(σ
2
α/2)− 1). It is known that Poisson regression

models for the conditional mean are often inappropriate for empirical analysis due to the over-

representation of zero counts in real world data, so in our simulation experiments, we include

models with a relatively large proportion of zeros, or “zero inflation” models (Gurmu and Trivedi

(1996)). In Table 3.2, the counts yit are distributed as a zero-inflated Poisson with a proportion of

zero inflation of 0.1 and exp(αi) continues to be distributed as Γ(1, 1). We also consider that the

counts yit’s are negative binomial random variables with mean µit and variance µit + 0.5µ2it with a

proportion of zero inflation of 0.1. The distribution of unobserved heterogeneity αi in the negative

binomial case is i.i.d. Normal with mean 0 and variance equal to 1.

In Table 3.1, we consider N = {500, 1000} and T = {5, 20} and the following basic variations of

the model:

Design 1: Individual specific effects do not enter multiplicatively in the conditional mean

function and the independent variable is not correlated with unobserved individual het-

erogeneity. When the counts are Poisson, this case produces an average sample mean and

variance for the dependent variable that are approximately equal to 2.8. We assume β2 = 0

and π1 = 0.

Design 2: Individual unobserved heterogeneity is a latent variable in the count model and

it is not correlated with the independent variable. In the Poisson case, the average count

mean of 2.8 is smaller than the variance of the count variable which is equal to 14.6. In

this case, we assume β2 = 1 and π1 = 0.

Design 3: We consider the case that latent individual heterogeneity is correlated with the

independent variable and individual specific effects enter in the model for the count yit (i.e.,

β2 = 1 and π1 = 1). As in Design 2, this case produces an average count value that is

smaller than the variance of the count variable.

This design specification allows us to explore the impact of estimating models with random individ-

ual effects (Design 2 vs Design 1) and the impact of having individual effects which are correlated

with other right hand side variables (Design 3 vs Design 2).

All tables present the root mean square error (RMSE) for the slope parameter. We only report

RMSE to the effect that the bias mirrors the RMSE closely and the variance of the estimators are
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Quantile Regression Methods
Sample τ = 0.25 quantile τ = 0.50 quantile
Size QR QC QCFE PQC QR QC QCFE PQC

N T Poisson counts: Design 1

500 5 0.095 0.052 0.043 0.043 0.004 0.046 0.042 0.042
500 20 0.095 0.052 0.045 0.046 0.002 0.038 0.034 0.035
1000 5 0.095 0.052 0.046 0.046 0.003 0.033 0.029 0.030
1000 20 0.095 0.052 0.046 0.047 0.002 0.028 0.026 0.026

N T Poisson counts: Design 2

500 5 3.056 0.057 0.034 0.039 0.039 0.049 0.036 0.040
500 20 3.034 0.056 0.038 0.042 0.029 0.036 0.030 0.033
1000 5 3.054 0.056 0.039 0.043 0.032 0.027 0.026 0.029
1000 20 3.060 0.057 0.040 0.043 0.028 0.021 0.023 0.025

N T Poisson counts: Design 3

500 5 2.760 0.623 0.013 0.081 0.494 0.607 0.014 0.050
500 20 2.743 0.625 0.015 0.065 0.488 0.583 0.012 0.043
1000 5 2.747 0.623 0.016 0.059 0.489 0.566 0.010 0.039
1000 20 2.759 0.623 0.016 0.058 0.491 0.553 0.009 0.035

N T Negative Binomial: Design 1

500 5 1.042 0.021 0.031 0.025 0.027 0.019 0.028 0.023
500 20 0.782 0.021 0.031 0.025 0.015 0.013 0.022 0.017
1000 5 0.845 0.021 0.031 0.026 0.020 0.009 0.018 0.013
1000 20 0.767 0.022 0.032 0.026 0.011 0.007 0.015 0.010

N T Negative Binomial: Design 2

500 5 2.960 0.011 0.018 0.015 0.037 0.010 0.029 0.024
500 20 2.969 0.012 0.027 0.023 0.021 0.004 0.025 0.019
1000 5 2.980 0.013 0.029 0.025 0.027 0.001 0.022 0.016
1000 20 2.975 0.013 0.029 0.025 0.018 0.002 0.020 0.014

N T Negative Binomial: Design 3

500 5 2.892 0.552 0.020 0.234 0.723 0.549 0.005 0.179
500 20 2.893 0.553 0.007 0.198 0.713 0.542 0.005 0.173
1000 5 2.894 0.553 0.002 0.186 0.711 0.536 0.005 0.169
1000 20 2.898 0.554 0.003 0.184 0.712 0.532 0.006 0.166

Table 3.1. Root mean squared error of a class of panel data estimators in
the Poisson and Negative Binomial models. Unobserved heterogeneity is dis-
tributed as Gamma in the Poisson case and Gaussian in the Negative Binomial
case. The evidence is based on 400 randomly generated samples considering
50 jittered samples.
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Figure 3.1. Efficiency gains of the proposed panel count estimators.

small in Big data problems. The methods are: Quantile regression (QR) as in Koenker and Bassett

(1978), quantile for counts (QC) developed by Machado and Santos Silva (2005), average jittered

estimator for a model with fixed effects (QCFE) which is defined in (2.12) - (2.13) by setting λ = 0,

and average jittered estimator for a model with penalized fixed effects (PQC) which is defined in

(2.12) - (2.13) by setting λ > 0. In the simulations, we select λ = 1 because it minimizes the

variance of the PQR estimator in the negative binomial case with αi ∼ N (0, 1). Naturally, this

choice is not expected to improve the performance of the QCFE estimator when exp(αi) ∼ Γ(1, 1).

Moreover, the proposed approaches QCFE and PQC adopt the logarithmic transformation and

are implemented using m = 50 jittered samples. Specifically, we obtain the dependent variable

log(zit− τ) for zit > τ and log(ǫit) ≤ τ with ǫit = 10−5 and zit = yit+uit where uit is distributed as

U [0, 1). Based on preliminary experiments, the choice of m = 50 provides a balanced compromise

between computational cost in terms of time and efficiency gains. The main increase in precision
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Quantile Regression Methods
Sample τ = 0.25 quantile τ = 0.50 quantile
Size QR QC QCFE PQC QR QC QCFE PQC

N T Zero-inflated Poisson

500 5 2.635 0.646 0.012 0.114 0.536 0.628 0.017 0.073
1000 5 2.647 0.643 0.017 0.085 0.529 0.587 0.012 0.056

N T Zero-inflated Negative Binomial

500 5 2.602 0.477 0.072 0.202 0.901 0.483 0.037 0.156
1000 5 2.618 0.480 0.045 0.158 0.897 0.491 0.024 0.157

Table 3.2. Root mean squared error of a class of panel data estimators in
the case of zero-inflated models under Design 3. Unobserved heterogeneity is
distributed as Gamma in the Poisson case and as Gaussian in the Negative
Binomial case. The evidence is based on 400 randomly generated samples
considering 50 jittered samples.

can be achieved by selecting m ≥ 20, as briefly illustrated in Figure 3.1 using simulations under

Design 2. This evidence is consistent with the theoretical result introduced in Corollary 1.

First, let us consider the results for the Poisson model (Table 3.1). As expected the QR estimator

performs in general worse than the other estimators across designs and is not suitable for the

analysis of count data. The QC estimator performs reasonably well for Design 1 which does not

include individual effects but its performance deteriorates in Design 3 as a result of its inability

to correctly account for the presence of individual effects correlated with the independent variable.

The QCFE estimator introduced in this paper performs very well across designs with a bias is no

more than 4%-5% and very low RMSE too. As discussed before, in some practical situations it

may be useful to consider the penalized version of this estimator too, which reduces the variance of

the QCFE estimator by penalizing the estimation of the individual effects. In this data generating

framework penalizing the model introduces few distortions in Design 3 and the results for PQC in

Designs 1 and 2 are comparable in terms of bias and RMSE to those for the QCFE estimator.

In the lower block of Table 3.1, we explore the performance of the estimators further by using a

negative binomial data generating process without zero inflation. The simulations continue to show

that the QCFE estimator performs well. The RMSE is lower in this example than in the Poisson

case due to the different distribution assumed for unobserved individual heterogeneity. In this case,

the QC estimator performs well in Designs 1 and 2. Another very interesting development occurs

when employing the penalized estimator PQC. The PQC estimator performs well for Designs 1 and
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Quantile Count Model with Fixed Effects
Sample Size τ = 0.25 τ = 0.50

1% 5% 10% 1% 5% 10%

N T Poisson counts: Design 2

500 5 0.008 0.059 0.099 0.011 0.051 0.111
1000 5 0.009 0.053 0.104 0.015 0.063 0.120

N T Poisson counts: Design 3

500 5 0.014 0.047 0.099 0.015 0.049 0.104
1000 5 0.010 0.048 0.100 0.015 0.060 0.104

N T Negative binomial: Design 2

500 5 0.007 0.055 0.104 0.008 0.048 0.114
1000 5 0.015 0.057 0.111 0.010 0.057 0.106

N T Negative binomial: Design 3

500 5 0.005 0.046 0.102 0.008 0.051 0.100
1000 5 0.011 0.057 0.107 0.006 0.052 0.105

Table 3.3. Rejection probabilities for the Poisson and Negative Binomial Dis-
tributions at the median quantile. The evidence is based on 1000 randomly
generated samples.

2 improving the RMSE of the QCFE estimator, although its performance is substantially worse in

Design 3. This shows that there are practical costs associated with the use of penalized estimators

in models with dependence between αi and xit and the practitioner should keep these lessons in

mind when employing panel count methods in applications.

Practitioners often face the problem of zero-inflated outcomes. Commonly encountered data often

features an excess of zero observations. In the motivating examples for this paper, this is due to

the fact that in many periods of interest households simply don’t shop, click or tweet. Human

activity tends to happen in bursts with significant periods where no activity is recorded. In order

to evaluate the performance of our estimators in situations such as these we augment the previous

Poisson generating process by setting 10% of the outcomes to zero. To save space, we consider

T = 5 and we report results in Table 3.2 only for Design 3, which represents closely the situation

we face in the empirical application in Section 4. The zero-inflated case is a more challenging setup

and the associated costs in terms of bias and RMSE is visible in the case of QCFE estimator. Our

proposed estimator continues to perform well and in most simulations the bias is less than 6% and

it offers the best performance in terms of RMSE.
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Lastly in Table 3.3 we compare the rejection probabilities for the quantile count model with fixed

effects (QCFE) at 1%, 5%, 10% at the 0.25 and 0.5 quantiles for models based on the Poisson and

Negative Binomial distributions. Of particular interest is the performance of the proposed estimator

in models with individual unobserved heterogeneity (Designs 2 and 3). Given the relative novelty

of the inferential approach proposed in this setting which differs substantially from that typically

developed for a quantile regression model it is important to evaluate the rejection probabilities

and determine the suitability of the inferential methods in practical settings. While the rejection

probabilities suggest that the proposed approach works well in practice, at the 0.5 quantile in

particular we observe a very robust performance of our methods.

Overall, the finite sample performance of the proposed methods for count data models with indi-

vidual effects is very good in all the variants of the models considered in the simulations. When

the degree of shrinkage is known and the degree of dependence between individual heterogeneity

and the covariates is negligible, the PQC estimator appears to improve the performance of the

QCFE estimator and can offer substantial efficiency gains in Big data applications. The QCFE

estimator however has very low biases in all the variants of the models and it offers the best overall

performance in the class of panel count models.

4. An Empirical Illustration

Modeling consumer search and choice behavior is central to many areas from economics and mar-

keting to transportation research. While traditionally researchers focused on modeling trips to

physical stores such as grocery stores (Bell, Ho and Tang 1998; Bawa and Gosh, 1999), most re-

cently attention has shifted to include trips to virtual stores (Pozzi, 2012). Understanding the way

in which consumers make choices over the number of trips to stores has important consequences for

their search behavior over alternatives and ultimately the purchases they end up making. There-

fore researchers try to model the number of trips in relation to customer demographics and local

economic conditions. Understanding trip behavior has important consequences for firm decisions

such as marketing and pricing strategies that enable a store to compete in the market place. Trip

behavior is also important for deciding on store locations.

But attempts to model the number of shopping trips is not only relevant for firm actions but also

impacts broader social planning decisions. The popularity of these models in transportation re-

search reflects concerns related to traffic congestion and optimal city planning. In public health,
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researchers have recently started to explore the relationship between shopping trips and food pur-

chases. Faced with increasing obesity rates increasing attention has been devoted to understanding

purchasing environments and the way consumers make purchase decisions that are impacted by

the availability of stores in their immediate proximity.5 For example, it is now common to refer to

areas where consumers lack access to healthy foods as “food deserts”. These are areas associated

with depressed economic conditions. According to some estimates over 29 million Americans live

in food deserts and have to commute substantial distances to get to the nearest large supermarket

or grocery store (Levi, Segal, St. Laurent, and Rayburn (2014)). Given that access to healthy food

is not readily available for many consumers, grocery trip behavior is an important determinant of

nutritional intake and eventual health outcomes. It complements other factors that are associated

with the rise of obesity such as the decreasing cost of food, changing patterns of time allocation,

and economic shocks (Sturm and Ruopeng (2014)).

In addition to demographic factors, researchers also focus on importance of local economic condi-

tions as determinants of consumption outcomes. Dave and Kelly (2012) document the relationship

between unemployment and the consumption of (healthy) foods. In other areas of consumption,

wealth, local unemployment variation, and fluctuations in housing prices have also been investigated

(see, e.g., Poterba 2000, Dynarski and Sheffrin 1987, Campbell and Cocco 2007).

The lack of suitable data has so far prevented a detailed investigation of the relative importance

of demographics and local economic conditions in determining the number of shopping trips a

household engages in during a given period of time. Given the broad implications of understanding

shopping trips for both firms and social planners, the recent Great Recession provides an impor-

tant source of variation for trying to disentangle these effects. In this section we document how

the number of trips to grocery stores, relates to unemployment and housing prices as well as to

household socioeconomic characteristics. Using detailed scanner data similar to the one previously

employed in Burda, Harding and Hausman (2008, 2012) and Harding and Lovenheim (2014), we

find evidence of a wealth effect operating through the house prices at the upper tail of the condi-

tional trip distribution. We also find relatively weak demographic gradients at all quantiles. The

5Obesity is one of the major public health challenges of our time. Obesity has been associated with a variety
of health conditions such as cancer, diabetes, and heart disease. Current health care costs associated with
obesity are estimated to be between $147 billion and $210 billion per year (Levi, Segal, St. Laurent, and
Rayburn (2014)). Over the last three decades obesity rates have more than doubled. Not only have obesity
rates increased over time, but we have also witnessed substantial heterogeneity in obesity across a variety of
socio-demographics. Today, 47.8% of African Americans are obese compared to 32.6% of Whites. Mississippi
and West Virgia have obesity rates in excess of 35%, while the obesity rate in Colorado is only 21.3%. In
1980 obesity rates for all states were below 15%.
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results also show that cross-sectional and panel results differ in quantitatively very meaningful ways.

Once we account for unobserved heterogeneity the effect of observables is greatly diminished. This

challenges the usefulness of using demographic variables to profile customers as a marketing device.

Variable Mean Std Dev Quantiles

0.10 0.25 0.50 0.75 0.90

Number of shopping trips 8.691 5.720 3.000 5.000 7.000 11.000 16.000
Number of shopping days 6.791 3.995 2.000 4.000 6.000 9.000 12.000
Unemployment rate 6.662 2.809 3.800 4.500 5.800 8.400 10.700
Log of housing price 5.270 0.218 5.010 5.105 5.232 5.444 5.586
Unemployment 0.173 0.378 0.000 0.000 0.000 0.000 1.000
HH Income $30k-$45k 0.176 0.381 0.000 0.000 0.000 0.000 1.000
HH Income $45k-$70k 0.269 0.443 0.000 0.000 0.000 1.000 1.000
HH Income >$70k 0.382 0.486 0.000 0.000 0.000 1.000 1.000
Kids under 12 0.195 0.396 0.000 0.000 0.000 0.000 1.000
Kids over 12 0.185 0.388 0.000 0.000 0.000 0.000 1.000
Married 0.610 0.488 0.000 0.000 1.000 1.000 1.000
2 household members 0.358 0.479 0.000 0.000 0.000 1.000 1.000
3 household members 0.164 0.370 0.000 0.000 0.000 0.000 1.000
4 household members 0.145 0.352 0.000 0.000 0.000 0.000 1.000
5 household members 0.057 0.231 0.000 0.000 0.000 0.000 0.000
6 or more members 0.030 0.170 0.000 0.000 0.000 0.000 0.000

Number of months 43.654 17.470 23.000 24.000 45.000 59.000 72.000
Number of households 41,779
Number of observations 1,820,790

Table 4.1. Descriptive Statistics.

4.1. Data

In our analysis we employ data from the Nielsen Homescan Panel over the period 2005-2010. The

data is closely related to the sample used in Harding and Lovenheim (2014) which contains a

more in-depth description of the different data elements. The data is collected by a large panel

of households using home scanners. Enrolled households are provided with a device which records

food purchases made in a store for at-home consumption at the Universal Product Code (UPC)

level. For each transaction the database records detailed product and price information as well as

the location and date of purchase. Household demographic characteristics are collected every year.
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Figure 4.1. The empirical distributions of number of shopping trips and
number of shopping trips

Although it is known that the Nielsen data offers certain sampling distortions (see Burda, Harding

and Hausman (2012)), the detailed information on shopping trips offers a unique opportunity to

understand search behaviors across the conditional distribution. A system of rewards and nudges is

employed to induce a high participation and compliance rate. As a result the average participation

in the panel is for over 43 months, with significant number of households staying in the panel for

the entire 5 year period. Households are drawn from 52 large MSAs, ensuring a broad national

coverage.

In this analysis we use an unbalanced panel of households trips to grocery stores over a maximum

of 72 months, which is then augmented by the corresponding set of household demographic char-

acteristics. We employ two measures of shopping trip behavior: number of trips in a month unique
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to each date and store name and number of trips in a month unique to each date. We interpret

the former as the number of shopping trips to different stores in a given month and the latter as

the number of shopping days. The total number of data entries used for estimation consists of

1,820,790 observations for a total of 41,779 households (Table 4.1). Based on our experience with

working with the Nielsen panel we believe that these variables accurately capture the majority of

the trips undertaken by the households to purchase food for at-home consumption. These measure

do not include trips for food that is eaten outside of the house, e.g. in a restaurant. In our sample

households engage in 8.7 store trips per month, over approximately 7 shopping days. The data

shows a tremendous amount of variation in household trip behavior. At the 10th percentile, house-

holds shop only twice per month, while at the 90th percentile they go to grocery stores roughly

every other day. Figure 4.1 illustrates the distribution of shopping trips and shopping days in the

sample.

The households in our sample are characterized along a number of demographic dimensions, such

as employment, household income, and family composition. In the sample, the (recorded) male

or female household head is unemployed for over 17% of the sample, 61% of the households are

married households, 24.6% of the households consist of single individuals, 17.3% of the households

have household income <$30,000, while just over 38.2% of the households have income >$70,000,

and over 32% of the households have children. These demographic patterns are consistent with those

found in other papers using the Nielsen data, and reflect the extent to which the data collection

strategy skews the sample towards higher income households. While in some studies, it is common

to use demographic weights to rebalance the sample in order to match the demographic distribution

found in Census data, we do not pursue this strategy within the context of this application.

Local economic conditions are measured using two variables, the local area unemployment rate

and the housing price index. The Local Area Unemployment Rate is computed by the Bureau

of Labor Statistics. The House Price Index (HPI) is computed by the Federal Housing Finance

Authority and reflects house prices for single family homes. The Local Area Unemployment Rate is

available at the county level, while the HPI is only available at the MSA level. For each household

we know both the county and the MSA of their primary residence. The monthly values of the

local unemployment rate and the HPI are thus assigned to each household based on their residence.

Over the sampling period the local area unemployment rate varied both over time as a result of

the Great Recession, and over geography as a result of events such as Hurricane Katrina with some

MSAs experiencing unemployment rates in excess of 11%. Similar sources of variation are present
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Figure 4.2. Patterns of shopping trips for several households

in the housing price data with a strong temporal dimension reflecting the collapse of the housing

market during the sampling period.

The empirical analysis illustrates the use and estimation of the proposed count panel quantile ap-

proach to search and choice behavior using detailed transaction data. The data shows that different

households exhibit different trip patterns over the time. For instance, the count distributions of

households included in the left panel of Figure 4.2 have a similar location parameter but a different

scale parameter, while the panel in the right contrasts a household with a very small number of

shopping trips per month over the duration of the panel against a household with a very heteroge-

neous shopping trip activity ranging from only 1 or 2 trips in some months to close to 40 shopping

trips in some other months.
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4.2. Model specification

We estimate the following panel count model:

(4.1) µit = x′
itβ + d′

itγ + αi,

for max(t) = 72 months and i = 1, ..., 41, 779 households. Note that we are estimating the model

on an unbalanced panel of close to 2 million observations. The vector xit includes the local un-

employment rate and a local housing market price index. The vector dit includes indicators for

unemployment the head of the household, housing income, children under 12 years of age, children

over 12 years of age, an indicator for marital status, and indicators for the number of household

members. In our setting, it is possible that αi and dit are not independent, so we estimate the

model by fixed effects methods.

We consider the following conditional expectation, commonly encountered in standard count mod-

els:

(4.2) E(yit|µit) = exp(µit) = exp(x′
itβ + d′

itγ + αi)

where yit denotes the count variable of interest. In addition to estimating the parameters of interest,

we also aim to estimate the conditional quantile function of the count variable defined as follows:

QYit
(τ |xit,dit, αi) = ⌈QZit

(τ |xit, αi)− 1⌉ ,
=

⌈

τ − 1 + exp(x′
itβ + d′

itγ + αi)
⌉

,

where QYit
(τ |xit,dit, αi) denotes the conditional quantile function for the count variable and τ is

the quantile of interest.

4.3. An Empirical Analysis

Given the observed heterogeneity in shopping behavior documented in Table 4.1 and Figures 4.1

and 4.2, it is of interest to relate these to the observed demographics and measures of the strength

of the local economy. We compare the estimated coefficients and marginal effects for the cross-

section and panel count models for the 0.1, 0.5 and 0.9 quantiles of the outcome distribution. Table

4.2 reports the estimated coefficients for the model of shopping trips, while Table 4.3 reports the

coefficients for the model of the number of shopping days. Table 4.4 reports the estimated marginal

effects for both outcomes of interest. Throughout we report the corresponding standard errors for

coefficients and confidence intervals for the marginal effects.
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Variable Quantiles Mean
0.1 0.5 0.9

CQ QCFE CQ QCFE CQ QCFE
Unemployment rate 0.000 -0.002 0.004 -0.001 0.006 0.000 -0.001

(0.001) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000)
Log of housing price -0.046 0.002 0.006 -0.040 0.039 -0.060 -0.045

(0.005) (0.012) (0.003) (0.007) (0.003) (0.008) (0.004)
Unemployment 0.069 0.015 0.075 0.021 0.055 0.018 0.017

(0.003) (0.004) (0.002) (0.002) (0.002) (0.003) (0.001)
HH Income $30k-$45k 0.019 0.003 -0.019 0.009 -0.058 0.005 0.005

(0.004) (0.004) (0.002) (0.002) (0.002) (0.003) (0.002)
HH Income $45k-$70k -0.020 -0.011 -0.063 0.001 -0.101 -0.005 -0.004

(0.003) (0.005) (0.002) (0.003) (0.002) (0.003) (0.002)
HH Income >$70k -0.075 -0.018 -0.126 -0.003 -0.176 -0.006 -0.010

(0.003) (0.006) (0.002) (0.003) (0.002) (0.004) (0.002)
Kids under 12 -0.088 0.021 -0.089 0.014 -0.091 0.005 0.007

(0.003) (0.005) (0.002) (0.003) (0.002) (0.003) (0.002)
Kids over 12 0.001 0.021 0.012 0.023 0.008 0.021 0.024

(0.003) (0.004) (0.002) (0.002) (0.002) (0.002) (0.001)
Married 0.103 0.044 0.086 0.036 0.051 0.013 0.039

(0.003) (0.008) (0.002) (0.004) (0.002) (0.005) (0.003)
2 household members 0.191 0.053 0.200 0.049 0.178 0.032 0.046

(0.003) (0.006) (0.002) (0.003) (0.002) (0.004) (0.002)
3 household members 0.185 0.063 0.227 0.057 0.230 0.041 0.059

(0.004) (0.007) (0.003) (0.004) (0.003) (0.004) (0.003)
4 household members 0.182 0.061 0.251 0.060 0.272 0.045 0.060

(0.005) (0.008) (0.003) (0.004) (0.004) (0.005) (0.003)
5 household members 0.183 0.073 0.285 0.058 0.324 0.051 0.065

(0.007) (0.010) (0.004) (0.005) (0.004) (0.006) (0.003)
6 or more members 0.184 0.080 0.331 0.064 0.407 0.055 0.079

(0.008) (0.013) (0.005) (0.007) (0.005) (0.008) (0.004)
Bimonthly effects Yes Yes Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes Yes Yes
Number of parameters 25 41804 25 41804 25 41804 24
Number of observations 1820790 1820790 1820790 1820790 1820790 1820790 1820790

Table 4.2. Cross-section and panel count results for the number of shop-
ping trips. The table shows Quantile for counts (QC) and the average jittered
estimator for a model with fixed effects (QCFE). Mean denotes ML estimation
for a model with fixed effects. Standard errors are presented in parentheses.



29

Variable Quantiles Mean
0.1 0.5 0.9

CQ QCFE CQ QCFE CQ QCFE
Unemployment rate -0.003 -0.002 0.000 -0.002 0.001 -0.002 -0.002

(0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)
Log of housing price -0.052 0.002 0.001 -0.030 0.038 -0.045 -0.032

(0.005) (0.011) (0.003) (0.006) (0.003) (0.006) (0.005)
Unemployment 0.062 0.015 0.070 0.018 0.047 0.017 0.016

(0.003) (0.004) (0.002) (0.002) (0.002) (0.002) (0.002)
HH Income $30k-$45k 0.023 0.006 -0.007 0.009 -0.051 0.003 0.006

(0.003) (0.004) (0.002) (0.002) (0.002) (0.002) (0.002)
HH Income $45k-$70k -0.004 -0.005 -0.035 0.003 -0.082 -0.004 -0.001

(0.003) (0.005) (0.002) (0.003) (0.002) (0.003) (0.002)
HH Income >$70k -0.051 -0.015 -0.084 -0.002 -0.136 -0.006 -0.008

(0.003) (0.005) (0.002) (0.003) (0.002) (0.003) (0.003)
Kids under 12 -0.080 0.025 -0.066 0.017 -0.065 0.005 0.012

(0.003) (0.005) (0.002) (0.003) (0.002) (0.003) (0.002)
Kids over 12 0.002 0.019 0.020 0.023 0.016 0.021 0.024

(0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002)
Married 0.099 0.031 0.076 0.024 0.046 0.008 0.028

(0.003) (0.008) (0.002) (0.004) (0.002) (0.004) (0.003)
2 household members 0.151 0.046 0.159 0.048 0.139 0.033 0.042

(0.003) (0.005) (0.002) (0.003) (0.002) (0.003) (0.002)
3 household members 0.131 0.053 0.173 0.053 0.177 0.041 0.051

(0.004) (0.006) (0.002) (0.004) (0.003) (0.004) (0.003)
4 household members 0.119 0.049 0.187 0.051 0.213 0.044 0.051

(0.005) (0.007) (0.003) (0.004) (0.003) (0.004) (0.003)
5 household members 0.105 0.052 0.205 0.048 0.244 0.049 0.052

(0.006) (0.009) (0.004) (0.005) (0.004) (0.005) (0.004)
6 or more members 0.104 0.065 0.233 0.055 0.301 0.046 0.062

(0.008) (0.011) (0.005) (0.006) (0.005) (0.006) (0.005)
Bimonthly effects Yes Yes Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes Yes Yes
Number of parameters 25 41804 25 41804 25 41804 24
Number of observations 1820790 1820790 1820790 1820790 1820790 1820790 1820790

Table 4.3. Cross-section and panel count results for number of shopping
days. The table shows Quantile for counts (QC) and the average jittered es-
timator for a model with fixed effects (QCFE). Mean denotes ML estimation
for a model with fixed effects. Standard errors are presented in parentheses.
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At a basic level one of the first questions for an applied researcher is the extent to which the

observed variation can be explained by observable attributes of the household or whether the choices

people made are driven largely by unobserved attributes (which themselves may be correlated

with observables). The comparison between cross-sectional and panel estimators is informative as

it allows us to distinguish between the effect due to changing demographics and the effect due

to household characteristics not included in the model, but which may be correlated with the

observables of interest. Our data allows us to address this question due to the relatively long

period over which we observe the households, which means that we can observe changes in some

household characteristics such family size and income, even though we do not observe changes

in other characteristics such as education. This further highlights the need for the use of panel

methods.

First let us explore the extent to which demographic gradients explain the heterogeneity in shop-

ping behavior. We would expect family size and composition to be important drivers of shopping

behavior. We estimate a very pronounced positive gradient for family size for both the number of

trips and the number of shopping days using the cross-sectional methods. This gradient increases

with the quantile of the conditional outcome distribution. The gradient is however substantially

lower once we estimate the same model using panel methods indicating that by ignoring the un-

measured individual heterogeneity, cross-sectional methods tend to overestimate the effect of family

size. In terms of the marginal effect however, we find no effect at the 0.1 quantile for either mea-

sure of shopping behavior, but we do find a weak effect of one additional trip but not shopping

day for households in the upper quantiles of the conditional outcome distributions. The marginal

effect is the same for all household sizes greater than 2. This indicates that children induce an

additional shopping trip for households in the upper quantiles but that the number of trips is not

determined by the number of children. Notice however, that the effect becomes more pronounced

and statistically significant for households with 5 or more members.

The coefficients for married households indicates a small impact which is decreasing across condi-

tional distribution. The marginal effect estimated from the panel model is zero for all quantiles.

Similarly, once we control for household size the presence of children of different ages does not

seem to impact the marginal effect in the panel models. The coefficients on household income

appear to indicate a small negative income gradient on the number of shopping trips and shopping

days. This appears to be rather substantial at the upper quantiles in the cross-sectional models to

have a generally negative effect on shopping activity. We find that this effect is quite substantial

in the cross-sectional models but is much smaller in the panel models. Broadly speaking higher
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household income is associated with lower shopping activity. While the effects are relatively small,

high income households, defined as having income over $70,000 tend to spend fewer days shopping,

reflecting the increase cost of time and the ability to make larger purchases. Notice however that

the marginal effect across all quantiles is zero for the panel models.

Households where the self-reported head of the household is unemployed are also more likely to

have a higher number of shopping trips and shopping days at the tails of the outcome distribution,

in cross-sectional models. This may be interpreted as reflecting increased search activity and also

a lower cost of time. In panel data models however the marginal effect is zero.

Once we control for household head unemployment status we find no effect of the local area unem-

ployment variable for either measure of shopping intensity and across all quantiles of the conditional

distribution. Housing prices on the other hand have a more pronounced negative effect, which is

larger at the upper quantiles of the conditional distribution. This may be indicative of an overall

wealth effect which dampens overall shopping intensity. The marginal effect for the housing price

index equates -1 for both the shopping trip and shopping days outcome at the 0.9 quantile in the

panel models.

It is noteworthy that most of the variables considered have no impact at the lower quantiles of

either the number of shopping trips and the number of shopping days. The only exceptions seem

to be variables related to family size and housing prices. Larger households engage in additional

shopping trips.

At the same time the decrease in wealth appears to have induced an increase in the number of

shopping trips and shopping days at the upper quantiles, which may be indicative of an increase

in search behavior. From an economic point of view this latter result is related to the debate in

Campbell and Cocco (2007) and Attanasio et. al. (2009). While this evidence does not conclusively

show that wealth impacts consumption, it does show that at least at the upper quantiles of the

conditional trip distribution, the fall in house prices (and associated wealth reduction) did increase

the number of shopping trips and shopping days. We believe this to be indicative of increased

search behavior that would be expected as a result of households facing tighter budget constraints

and thus having an increased incentive to engage in economizing behavior.

Overall, our paper however highlights the importance of unobserved heterogeneity in determining

the intensity with which people shop. Using cross-sectional methods over-estimates the impact of

household characteristics on shopping intensity. Once we account for unobserved heterogeneity the

impact of observable demographics is greatly diminished. It appears that profiling customers based



32

Variable Quantiles
0.1 0.5 0.9

CQ QCFE CQ QCFE CQ QCFE
Count variable = Number of shopping trips

Unemployment rate 0[0,0] 0[0,0] 1[1,1] 0[0,0] 0[0,0] 0[0,0]
Log of housing price 0[0,0] 0[0,0] 1[0,1] 0[0,0] 0[0,0] -1[-1,0]
Unemployment 0[0,0] 0[0,0] 1[1,1] 0[0,0] 1[1,1] 0[0,0]
HH Income $30k-$45k 0[0,0] 0[0,0] 0[0,0] 0[0,0] -1[-1,-1] 0[0,0]
HH Income $45k-$70k 0[0,0] 0[0,0] 0[0,0] 0[0,0] -2[-2,-2] 0[0,0]
HH Income >$70k 0[0,0] 0[0,0] 0[0,0] 0[0,0] -3[-3,-3] 0[0,0]
Kids under 12 0[0,0] 0[0,0] 0[0,0] 0[0,0] -2[-2,-2] 0[0,0]
Kids over 12 0[0,0] 0[0,0] 1[1,1] 0[0,0] 0[0,0] 0[0,0]
Married 0[0,0] 0[0,0] 1[1,1] 0[0,0] 1[0,1] 0[0,0]
2 household members 0[0,0] 0[0,0] 2[2,2] 0[0,1] 3[3,3] 0[0,1]
3 household members 0[0,0] 0[0,0] 2[2,2] 1[0,1] 4[4,4] 1[0,1]
4 household members 0[0,0] 0[0,0] 3[2,3] 1[1,1] 4[4,5] 1[0,1]
5 household members 0[0,0] 0[0,0] 3[3,3] 1[0,1] 6[5,6] 1[1,1]
6 or more members 0[0,1] 0[0,0] 3[3,4] 1[1,1] 7[7,8] 1[1,1]
Bimonthly effects Yes Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes Yes
Number of parameters 25 41804 25 41804 25 41804
Number of observations 1820790 1820790 1820790 1820790 1820790 1820790

Count variable = Number of shopping days
Unemployment rate 0[0,0] 0[0,0] 0[0,0] 0[0,0] 0[0,0] 0[0,0]
Log of housing price 0[0,0] 0[0,0] 0[0,0] 0[0,0] 0[0,0] -1[-1,-1]
Unemployment 1[1,1] 0[0,0] 0[0,1] 0[0,0] 1[1,1] 0[0,0]
HH Income $30k-$45k 0[0,0] 0[0,0] 0[0,0] 0[0,0] -1[-1,-1] 0[0,0]
HH Income $45k-$70k 0[0,0] 0[0,0] 0[0,0] 0[0,0] -1[-1,-1] 0[0,0]
HH Income >$70k 0[0,0] 0[0,0] 0[0,0] 0[0,0] -2[-2,-2] 0[0,0]
Kids under 12 0[0,0] 0[0,0] 0[0,0] 0[0,0] -1[-1,-1] 0[0,0]
Kids over 12 0[0,0] 0[0,0] 0[0,0] 0[0,0] 0[0,0] 0[0,0]
Married 1[1,1] 0[0,0] 1[0,1] 0[0,0] 1[0,1] 0[0,0]
2 household members 1[1,1] 0[0,0] 1[1,1] 0[0,0] 2[2,2] 0[0,0]
3 household members 1[1,1] 0[0,0] 1[1,1] 0[0,0] 2[2,2] 0[0,0]
4 household members 1[1,1] 0[0,0] 1[1,1] 0[0,0] 3[3,3] 0[0,0]
5 household members 1[1,1] 0[0,0] 1[1,1] 0[0,0] 3[3,3] 0[0,0]
6 or more members 1[1,1] 0[0,0] 2[2,2] 0[0,0] 4[4,4] 0[0,0]
Bimonthly effects Yes Yes Yes Yes Yes Yes
Year effects Yes Yes Yes Yes Yes Yes
Number of parameters 25 41804 25 41804 25 41804
Number of observations 1820790 1820790 1820790 1820790 1820790 1820790

Table 4.4. Marginal effects in the cross-section and panel count model of
shopping trips. 95 percent confidence intervals are in brackets.
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on commonly used demographic variables and measures of the strength of the local economy is

of limited value. In practice marketers may also have access to a much more extensive vector of

demographic variables than we have used in this example. We cannot exclude the possibilities that

additional variables or finer measures may not perform better. At the same time the limited use of

some of the core demographic variables ought to give us pause and make us re-evaluate our priors

about the use of demographic information to predict customer choice behavior. This appears to

be consistent with anecdotal evidence from marketers who prefer to use past consumption patterns

as predictors of future choices. This appears to indicate that the value of Big Data for predicting

consumption and choices may come not from a richer set of individual demographic measures but

rather from the time series of past individual transactions.

5. Conclusion

This paper introduces a new quantile regression estimator for panel count data. It overcomes the

challenge of implementing quantile modeling on discrete data by “jittering” the discrete outcome

by the addition of uniform random noise. This allows us to construct continuous response vari-

ables whose conditional quantiles have a one-to-one relationship with the count response variable

conditional on observables and unobservables. The availability of Big Data allows us to estimate

panel models where we allow for unobserved individual heterogeneity. At the same time realistic

applications such as the one discussed in Section 4 imply the need to estimate tens of thousands

of parameters, which imposes substantial computational challenges. We overcome these challenges

by adopting a new sparsity based implementation. At the same time we also explore penalized

versions of our proposed estimator.

The paper presents asymptotic results and also compares the finite sample performance of the

proposed estimator with that of existing alternatives. We find that the proposed estimator performs

very well under a variety of scenarios. We do however caution against the use of penalization to

reduce the computational burden in cases with significant zero inflation and endogenous covariates.

In the empirical application, we explore the extent to which demographic variables and measures

of the local economy can be used to explain the observed variation in the number of trips and the

number of shopping days for households buying food at the store for consumption at home. We use

a unique transaction level dataset of close to 2 million observations for over 40,000 US households

over a period of up to 72 months. The results indicate that once we account for unobserved

heterogeneity in a panel data framework the impact of the explanatory variables nearly vanishes.
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Interestingly, we do observe a small negative wealth effect at the upper tail of the conditional trip

density which operates through the house price channel and may indicate that the recent recession

increased search behavior.
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Appendix A. Proofs

Proof of Theorem 1. The proof is divided in three steps. We first need to show that existing

quantile regression asymptotic results can be employed. This can be simply demonstrated following

Machado and Santos Silva (2005)’s Theorem 1 which shows that the limiting objective function has

a second-order Taylor expansion and then it is possible to perform inference on QZ(τ |·). Second,

we obtain the Bahadur representation of β̃ by concentrating out the Bahadur representation of

α̃. Because standard panel quantile regression is employed in the first step, we use the results in

Koenker (2004) and Lamarche (2010) to derive the function of interest for one jittered sample and

to obtain its asymptotic distribution. Lastly, we derive the asymptotic covariance matrix of the

jittered estimator β̂. The estimator β̃(τ, λ) depends on τ and λ, but in what follows, we assume

τ and λ to be fixed and suppress these dependencies for notational simplicity. We also supress for

notational simplicity conditioning on xit and αi0.

Under the regularity conditions with N and T going jointly to ∞, by Theorem 1 in Koenker (2004,

p. 82) and Theorem 1 in Lamarche (2010), we have that,

√
NT (β̃ − β) = D−1

[

1√
NT

N
∑

i=1

T
∑

t=1

(xit − x̃i)ψτ (h(zit)− ξit(τ)) +
λT√
T

1√
N

N
∑

i=1

x̃iψτ (αi)

]

+ op(1)

where ψτ (u) = τ − I(u ≤ 0), x̃i = (T f̄i)
−1

∑T
t=1 fitxit, f̄i =

∑T
t=1 fit(ξ(τ)), fit := fh(Zit,τ) and the

panel data conditional quantile function is ξit(τ) = x′
itβ(τ) + αi(τ).

Let z
(l)
it = yit+u

(l)
it for l = 1, . . . ,m. By the regularity conditions, the quantile regression estimator√

NT (β̃(l) − β)  D−1(B(l) + λC), where B
(l) is a zero mean Gaussian vector with covariance

matrix τ(1−τ)E ((xit − x̃i)(xit − x̃i)
′) and under Assumption 4, C is a zero mean Gaussian vector

with covariance matrix τ(1 − τ)E (x̃ix̃
′
i). It follows then that the asymptotic covariance matrix

is then D−1V0D
−1. It then remains to obtain m(m − 1) asymptotic covariance matrices of the

estimators corresponding to m jittered samples.

It follows that,

E
(√

NT (β̂(l) − β)
√
NT (β̂(k) − β)

)

= D−1E

[

[

1√
NT

N
∑

i=1

T
∑

t=1

(xit − x̃i)ψτ (h(z
(l)
it )− ξit(τ)) +

λT√
T

1√
N

N
∑

i=1

x̃iψτ (αi)

]

[

1√
NT

N
∑

i=1

T
∑

t=1

(xit − x̃i)ψτ (h(z
(k)
it )− ξit(τ)) +

λT√
T

1√
N

N
∑

i=1

x̃iψτ (αi)

]

]

D−1.
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Let ϑitl := (xit − x̃i)ψτ (h(z
(l)
it )− ξit(τ)) and ζil := x̃iψτ0(αi). Under Assumptions 1 and 2,

E
[

(ϑitl + ζil) (ϑitk + ζik)
′] = E(ϑitlϑ

′
itk) + E(ζilζ

′
ik).

Conditional on xit and αi and using definitions, we write

E(ϑitlϑ
′
itk) = (xit − x̃i)E

(

ψτ (h(z
(l)
it )ψτ (h(z

(k)
it )

)

(xit − x̃i)
′

= (xit − x̃i)E
(

(τ − I(h(z
(l)
it ) ≤ ξit(τ)))(τ − I(h(z

(k)
it ) ≤ ξit(τ)))

)

(xit − x̃i)
′

= (xit − x̃i)E

(

(τ2 − τI(h(z
(l)
it ) ≤ ξit(τ))− τI(h(z

(k)
it ) ≤ ξit(τ))

+I(h(z
(l)
it ) ≤ ξit(τ))I(h(z

(k)
it ) ≤ ξit(τ))

)

(xit − x̃i)
′

= (xit − x̃i)
(

E
(

I(z
(l)
it ≤ h−1(ξit(τ)))I(z

(k)
it ≤ h−1(ξit(τ)))

)

− τ2
)

(xit − x̃i)
′

= (xit − x̃i)
(

E
(

I(u
(l)
it ≤ h−1(ξit(τ))− yit)I(u

(k)
it ≤ h−1(ξit(τ)) − yit)

)

− τ2
)

(xit − x̃i)
′,

Let uit(τ) = h−1(ξit(τ))− yit. Because the u’s are i.i.d. from a uniform distribution, using the law

of iterated expectations, we have that,

E(ϑitlϑ
′
itk) = (xit − x̃i)

[

E
(

E
(

I(u
(l)
it ≤ uit(τ))I(u

(k)
it ≤ uit(τ))

)

|yit
)

− τ2
]

(xit − x̃i)
′

= (xit − x̃i)
[

E
(

FU (uit(τ))
2
)

− τ2
]

(xit − x̃i)
′

= (xit − x̃i)

[

E

(

I(yit ≤ h−1(ξit(τ))− 1) + (h−1(ξit(τ))− yit)
2

I(h−1(ξit(τ))− 1 < yit ≤ h−1(ξit(τ))

)

− τ2
]

(xit − x̃i)
′

= (xit − x̃i)

[

P (yit ≤ h−1(ξit(τ))− 1) + (h−1(ξit(τ))−QYit
(τ |xit, αi))

2

P (yit = QYit
(τ |xit, αi))− τ2

]

(xit − x̃i)
′

= (xit − x̃i)

[

τ − P (yit = QYit
(τ |xit, αi))(h

−1(ξit(τ))−QYit
(τ |xit, αi))

(1− h−1(ξit(τ)) −QYit
(τ |xit, αi))− τ2

]

(xit − x̃i)
′

= (xit − x̃i)

[

τ(1− τ)−
(

F (QYit
(τ |xit, αi))(h

−1(ξit(τ)) −QYit
(τ |xit, αi))

(1− h−1(ξit(τ)) +QYit
(τ |xit, αi))

)

]

(xit − x̃i)
′.
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On the other hand,

E(ζilζ
′
ik) = λ2E

(

x̃iψτ (αi)ψτ (αi)x̃
′
i

)

= λx̃ix̃
′
iE ((τ − I(αi ≤ 0))(τ − I(αi ≤ 0)))

= λ2x̃ix̃
′
iE

(

τ2 − τI(αi ≤ 0)− τI(αi ≤ 0) + I(αi ≤ 0)
)

= λ2τ(1− τ)x̃ix̃
′
i.

The last equality is obtained by Assumption 4 because Qα(τ |·) = 0. It follows then,

E
(√

NT (β̂(l) − β)
√
NT (β̂(k) − β)

)

= D−1

(

1

NT

N
∑

i=1

T
∑

t=1

(xit − x̃i)(τ(1 − τ)−Υit)(xit − x̃i)
′ +

λT√
T

τ(1− τ)

N

N
∑

i=1

x̃ix̃
′
i

)

D−1,

with Υit = fYit
(QZit

(τ |·)−QYit
(τ |·))(1 −QZit

(τ |·) +QYit
(τ |·)). �

Proof of Corollary 1. The proof follows immediately from Theorem 1 and Machado and Santos

Silva’s (2005) Theorem 5. �

Proof of Corollary 2. The results follows immediately by considering the limiting case of the pe-

nalized estimator when λ→ 0. �

Proof of Proposition 1. It follows that,

(L−1SL−1)11 =
[

W−1
11 −W−1

11 L12

]

[

S11 S12

S21 S22

][

W−1
11

−L21W
−1
11

]

,

where W11 = L11 −L12L
−1
22 L21 = L11 −L12L21. Then,

(L−1SL−1)11 = W−1
11 [S11 −L12S21 − S12L21 +L12S22L21]W

−1
11

= W−1
11 H11W

−1
11 .

�
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