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1 Introduction

Since Bates and Granger (1969), both the theoretical and applied forecasting literature

have embraced the use of forecast combinations. Despite the growing number of stud-

ies employing forecast combination, there is still a question that remains unresolved,

namely why a simple average with equal weight often outperforms complicated weight-

ing schemes in a mean-squared forecast errors (MSFEs) sense. This was coined by

Clemen (1989) and named “forecast combination puzzle” by Stock and Watson (2004).

There have several recent attempts to explaining the forecast combination puzzle, for

example by Smith and Wallis (2009), Elliott (2011), Vasnev et al. (2014).

Smith and Wallis (2009) propose that simple average forecast combination beat

complex weighting scheme partly because the weights have to be estimated, which

tend to be unreliable. Smith and Wallis (2009) finds that if the optimal weights are

close to equality, then simple average forecast combination is more accurate in the

MSFE sense. Their argument is based on obtaining weights that minimises the MSFE

and rely on the fact that the general weighting schemes nest the simple average, which

can be extended to the forecast evaluation of competing (nested) models as in Clark

and West (2007). They also show that the MSFE adjustment term that explains the

discrepancy between the sample average and the weighted alternative can be calculated.

The only advantage of using estimated weights over the simple average is when the

forecast errors differ substantially, which does not seem to happen much practically

as observed by Smith and Wallis (2009). Vasnev et al. (2014) follows in the footsteps

of Smith and Wallis (2009) and show that when the weights need to be estimated

the forecast combination is biased and the variance of the combination is larger than

in the fixed-weights case such as the simple average. Other and earlier explanations

pointing to the estimation error as the source of the problem include Clemen and

Winkler (1986), which investigate parameter instability as the underlying motive for

error, and also Hendry and Clements (2004) that considers discrete shift in the data

generating process and forecasting models that are mis-specifed. Elliott (2011), on the

other hand, investigates the hypothesis that the size of the gains from combination are

outweighed by the estimation error. Furthermore, Elliott (2011) examines the sizes of
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the theoretical gains to optimal forecast combination and provide the conditions under

which averaging and optimal combination are equivalent.

This paper proposes a general framework which can be used to derive existing

results on forecast combination and to investigate further theoretical issues on forecast

combination not considered before. First, the paper derives the conditions under which

the simple average is the optimal weight. Second, it provides a theoretical investigation

on forecast combination puzzle, especially in light of the recent findings that estimation

error is at the source of the puzzle. Further insights are gained from the proposed

approach. The main contribution of this paper lies in the formulation of the problem, or

the framework, which permits to simply and generally expose the forecast combination

puzzle. This framework is closely related to the model studied by Hsiao and Wan

(2014) which imposed a multi-factor structure on the forecast error νit such that νit =

αi + b′iλλλt + εεεit where λλλt represents a vector of common factors. From this multi-factor

structure, Hsiao and Wan (2014) develop several eigenvector approaches to combining

forecasts. They also provide the conditions under which their new approaches yield

identical results to the regression approach of determining the optimal weight vector,

as suggested in Granger and Ramanathan (1984). Hsiao and Wan (2014) also provide a

necessary and sufficient condition where the simple average is an optimal combination,

but require estimating a scaling constant in case models produce biased forecast. This

paper contributes to the literature by showing that many of the results in Hsiao and

Wan (2014) can be derived without the multi-factor structure and therefore provides

more general results than Hsiao and Wan (2014). Finally, a set of conditions for which

the simple average outperforms optimal weighting schemes based on MAD is provided.

This has not been covered before by this literature.

The paper is organised as follows: Section 2 revisits forecast combination in the

context of the proposed framework in the case when forecasts are evaluated using

MSFE as a criterion. Moreover, it proposes a simple bilinear form to evaluate relative

efficiency of two forecast combinations. Section 3 derives several theoretical results

using the proposed framework including the conditions for which the simple average is

the optimal weight. Section 4 discusses forecast combination and simple averaging in

the context of the MAD evaluation criterion and concluding remarks can be found in
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Section 5.

2 Model and assumptions

This section introduces the framework to analyse the theoretical properties of fore-

cast combination. Let fit denotes an unbiased forecasts of a variable of interest yt for

model i, where i = 0, · · · , k, at time t then

yt = fit + νit i = 0, · · · , k, (1)

where νit are the forecast errors. Without loss of generality, let f0t be the “best”

unbiased forecast of variable yt, based on the forecast criterion g (fit) such that

E [g (ν0t)] < E [g (νit)] ∀i = 1, · · · , k,

where E (·) is the expectation operator. Let uit = ν0t − νit and rearranging equation

(1) gives

fit = yt − ν0t + uit i = 1, · · · , k. (2)

This framework decomposes the prediction errors νit into two parts. The first part ν0t

represents the prediction error from the best model and the second part, uit, represents

the difference in prediction errors between the best model and model i.

Following the standard practice, this paper focuses on the matrix version of equation

(2). Let Y = (y1, · · · , yT )′, ft = (f1t, · · · , fkt)′, F = (f1, · · · , fT )′, F0 = (f01, · · · , f0T )

and u = (u1, · · · ,uT )′ with ut = (u1t, · · · , ukt)′, νννt = (ννν1t, · · · , νννkt)′ with ννν = (ννν1, · · · , νννT )′

and ννν0 = (ν01, · · · , ννν0T )′. Equation (2) can be written in matrix form as

F = (Y − ννν0)⊗ i′ + u (3)

where i denotes a k×1 vector of ones and ⊗ denotes the Kronecker product. Forecasts

for t = 1, · · · , T based on a linear combination of forecasts from the k models is

therefore

Fa = Yi′a− ννν0i′a + ua. (4)
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If a is an affine combination, i.e. i′a = 1, then ννν0 + ua is a T × 1 vector containing

the forecast errors from the forecast combination. If a does not represent an affine

combination, then Fa does not produce unbiased forecasts, since E (Fa) = E (Y) i′a

under the standard assumptions that E (ν0t) = E (uit) = 0 for all i, t. It is for this

reason that only affine combination of forecast are considered.

This framework is flexible enough to produce simple and complex forecast combina-

tion models. For example, Bates and Granger (1969) presented a simple combination

model for two competing forecasts: fct = af1t+(1−a)f2t with forecast error νit = yt−fit,
i = 1, 2. This simply implies that ft = (f1t, f2t)

′ and a = (a, 1− a)′ in (4) and typically

0 ≤ a ≤ 1.

Unless otherwise stated, this paper assumes the following:

Assumption i. ν0t ∼ iid (0, σ2
ν).

Assumption ii. E (ut) = 0 and E (utu
′
t) = ΩΩΩ for all t where ΩΩΩ is a bounded matrix.

Assumption iii. E [g (uit) f (ν0t)] = E [g (uit)]E [f (ν0t)] for all i = 1, · · · k and any func-

tions g and f .

Remark 1. The existence of second moment applies only to the forecast errors and

not on the variable, yt. Thus, the analysis in this paper applies equally to the case

where yt ∼ I(1) under Assumptions (i) – (iii).

Remark 2. Note that uit is not required to be independently and identically dis-

tributed. This is particularly important in the time series context since uit represents

the deviations from the best model which is likely to be serially correlated. For exam-

ple, let yt = φ1yt−1 + φ2yt−2 + ν0t then f0t = φ1yt−1 + φ2yt−2 and let f1t = φ1yt−1, then

u1t = φ2yt−2 which is clearly serially correlated.

Remark 3. Since uit = ν0t− νit, Assumptions (i) and (ii) are sufficient to characterise

νit for i = 1, · · · , k, and also imply that the variance-covariance matrix of the forecast

errors ΩΩΩν = σ2
νii
′ + ΩΩΩ is a bounded matrix.
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Remark 4. The independence assumption as stated in Assumption (iii) may seem

restrictive but it is appropriate in the context of forecast combination problems. This

is due to the fact that most forecasts for time t are based on the information up to

time t− 1. More formally, let yt be a stochastic process adapted the filtration Ft, then

equations (1) and (2) imply uit ∈ Ft−1 but E (ν0t|Ft−1) = E (ν0t) under Assumption (i).

Therefore, ν0t and uit are independent for all i and t.

3 Optimal weights and averages

3.1 Deriving optimal weights

This section presents some theoretical results concerning forecast combination with

a specific focus on the optimal weight. The discussion assumes that the forecast cri-

terion is MSFE as commonly chosen in the forecast literature, which implies that

g : R→ R+ is a differentiable function. That is:

g (νit) = T−1ννν ′iνννi

where νννi = (νi1, · · · , νiT )′. Thus, the MSFE of a forecast combination, σ̂2
a, based on

the weight vector, a, and ννν is

σ̂2
a =g (νννa) (5)

=T−1a′ννν ′νννa (6)

=T−1 (ννν ′0ννν0 + a′u′ua) (7)

The last line follows from the restriction that i′a = 1. Note that E (σ̂2
a) = E [g (νννa)] =

σ2
ν + aΩΩΩa = σ2

a. Equation (7) also provides a natural and practical estimator for ΩΩΩ.

However, its consistency relies on T−1u′u−ΩΩΩ = op(1), which may not be true depending

on the memory structure in u. As discussed before, u is likely to be serially correlated

in the time series context and further assumption on u would then be required to ensure

Ω̂ΩΩ is a consistent estimator for ΩΩΩ.
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It is straightforward to derive a set of optimal weights by minimising the forecast

error variance as first introduced by Bates and Granger (1969). The k × 1 vector of

optimal weight a is the solution to the following optimisation problem

a =arg min
x

σ2
a = x′ΩΩΩx + σ2

ν (8)

s.t. i′x = 1. (9)

This can be solved by analysing the associated Lagrangian function:

L = x′ΩΩΩx + σ2
ν + λ (1− i′x)

with the first order condition being:

Lx|x=a,λ=λ∗ = 2a′ΩΩΩ− λ∗i′ =0

Lλ|x=a,λ=λ∗ = 1− i′a = 0.

Post-multiply Lx by a and using Lλ yields:

λ∗ = 2a′ΩΩΩa

which implies:

ΩΩΩa (a′ΩΩΩa)
−1

= i. (10)

Given the convexity of the objective function and the linearity of the constraint, equa-

tion (10) provides the necessary and sufficient condition to derive the optimal weight

vector, a. Note that ΩΩΩνa (a′ΩΩΩνa)−1 = i implies ΩΩΩa (a′ΩΩΩa)−1 = i, under the constraint

i′a = 1. It is thus straightforward to show that the closed form solution for the op-

timal weight vector does indeed satisfy equation (10). This closed form solution is in

fact derived in Elliott (2011), which generalise Bates and Granger (1969). Again in

the simple combination proposed by Bates and Granger (1969), x = (x, 1 − x)′ and

ΩΩΩν =

(
σ2
1 σ12

σ12 σ2
2

)
as before. Then minimising the forecast error variance would yield
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a =
σ2
2 − σ12

σ2
1 + σ2

2 − 2σ12
as the optimal value, as implied in (10).

The first observation from the above optimisation is that a does not depend on

σ2
ν . An immediate consequence is that forecast combination under affine combination

cannot perform better than the best model. This is obvious from the objective function

since ΩΩΩ is positive semi-definite and therefore x′ΩΩΩx ≥ 0 for all x. Thus, the role of the

optimal weights is to minimise the additional variance due to the deviations from the

best model. Interestingly, this observation is not restricted to affine combination of

forecasts, it also applies to linear combination of forecasts in general. As shown in the

following proposition, forecasts based on linear combinations of k competing models

cannot outperform the best model in the MSFE sense.

Proposition 1. x′ΩΩΩνx ≥ σ2
ν for all x ∈ Rk.

Proof. See Appendix.

Proposition 1 also suggests that ΩΩΩ contain all the necessary information to analyse

forecast combination problems with respect to MSFE and hence equation (10) is often

more convenient than the closed form solution as stated in Elliott (2011).

3.2 Is the simple average optimal?

Proposition 2. The simple average is the optimal weight if and only if ΩΩΩi = k−1i (i′ΩΩΩi).

The proof of Proposition 2 is trivial from equation (10). There are some interesting

implications of this result. First, it is obvious that if ΩΩΩ = σ2I for some σ2 < ∞
then ΩΩΩ satisfies the condition in Proposition 2 and therefore simple average will be the

optimal weight. This implies that all deviations from the best model are uncorrelated

with each other while the forecasts errors share the same correlation between each

model. This is due to the fact that the variance-covariance matrix of the forecast

errors, ΩΩΩν = σ2
νii
′+ a′ΩΩΩa. This result is consistent with those derived in Timmermann

(2006). Furthermore, Hsiao and Wan (2014) also provide a necessary and sufficient

condition where the simple average is an optimal combination. This condition covers

the possibility that some of the models may produce biased forecasts, which require to

estimate a scaling constant.
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The second observation is that if the deviations from the best model are not corre-

lated with each other but the variances of the deviations are different then the simple

average average will not be the optimal weight but it is still likely to perform bet-

ter than any single model. In order to formalise this claim, this paper proposes the

following bilinear form:

dV (x, z;ΩΩΩ) = (x + z)′ΩΩΩ (x− z) (11)

=x′ΩΩΩx− z′ΩΩΩz.

where x = (x1, ..., xk)
′ and z = (z1, ..., zk)

′ are two affine forecast combinations such

that dV represents the difference in forecast variance between the two affine combina-

tions. The weights vector under simple averaging is

z =
1

k
i (12)

which means that the difference in forecast variance between any affine combination x

and a simple average can be expressed as

dV
(
x, k−1i;ΩΩΩ

)
=

(
x +

i

k

)′
ΩΩΩ

(
x− i

k

)
.

Hence, the forecast performance of any affine forecast combination relative to the sim-

ple average can be analysed by examining the sign of the bilinear form as defined in

equation (11). Note that the relative efficiency depends solely on variance-covariance

matrix of the random deviations from the best model. This is a sequence of affine com-

bination and has some important implications. Specifically, equation (10) along with

the bilinear form as defined in equation (11) provide an unified framework to analyse

various problems arise from forecast combinations. The following corollaries provide

some examples on the advantage of this framework.

Corollary 1. If ΩΩΩ = diag (σ2
1, · · · , σ2

k), then

1. The simple average is not the optimal weight if σ2
i 6= σ2

j for some i 6= j.

2. Let σ̄2 = k−1
∑k

i=1 σ
2
i , model j will outperform a simple average forecast if and

8



only if

σ2
j <

σ̄2

k
. (13)

Proof. See Appendix.

Corollary 1 shows that a single model j can outperform simple average forecast if the

forecast variance of model j is less than the average forecast variance by a factor of

k−1. Moreover, under the assumption that σ̄ <∞,

σ̄2

k
= o(1).

This has two implications. First, if σ2
j > 0 then the simple average will eventually

outperform model j as the number of models increases. This result is quite important

as it helps to explain the superiority of simple average forecasts even when simple

average is not the optimal weight. Second, if σ2
j = 0, that is, model j is the true model

then the equality will hold as k →∞. In fact, this implication is not surprising as the

inequality in the second part of Corollary 1 can be written as

σ2
j ≤ V

(
k∑
i=1

u2it
k

)
,

where V (x) denotes the variance of x. The expression above states that the variance

of forecast errors from model j must be less than or equal to the variance of forecast

error from the simple average.

The relationship in (13) is also presented in Smith and Wallis (2009) equation (6);

they find that the simple average would outperform the weighted average systematically

when they are theoretically equivalent. This difference in MSFE is also defined as the

MSFE “adjustment” in Clark and West (2006).

The third observation from Corollary 2 is that the sum of each row in ΩΩΩ must be the

same for simple average to be the optimal weight. That is, if ΩΩΩ = {σij} with σii = σ2
i

then
∑k

j=1 σ
2
ij = σ for each i = 1, .., k and some σ < ∞. The significance of this

observation is that the sum of the variance and covariances of each k model must sum

to the same constant. Along with the restriction that ΩΩΩ must be a symmetric matrix,
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there are
k2 + k − 2

2
restrictions in ΩΩΩ. Although the simple average may not be the

optimal weight, the following proposition shows that it is likely that it will perform

better than a single model.

Corollary 2. Let ΩΩΩ = {σij} with σii = σ2
i for i, j = 1, · · · , k then the expected differ-

ence in MSFE between the rth model and the simple average is

dV
(
er, k

−1i;ΩΩΩ
)

= σ2
r −

σ̄2

k
− 2

k
σ̄r −

2

k
σ̄ij. (14)

where σ̄2 = k−1
∑k

i=1 σ
2
i , σ̄r = k−1

∑k
j=1,j 6=r σrj and σ̄ij = k−1

∑k
i=1,i 6=r

∑k
j>i,j 6=r σij.

Proof. See Appendix.

The result in Corollary 2 is quite insightful in explaining the performance of a simple

average relative to single model in general. Firstly, it is clear that

lim
k→∞

dV = σr ≥ 0 ∀r = 1, ..., k,

under Assumption (ii). Therefore, simple average will in general outperform a single

model when k is large. This is consistent with result in Corollary 1. Moreover, equation

(14) reduces to σ2
j − k−1σ̄2 if the deviations are not correlated with each other and

further reduces to the result in Corollary 1 when σrj = 0 for all r = 1, · · · , k.

In order to gain further insight on the implication of equation (14), consider once

again two competing forecasts f1t and f2t with ΩΩΩ =

[
σ2
1 σ12

σ21 σ2
2

]
, and without loss of

generality, assume σ2
1 < σ2

2. The expected difference in MSFE between model 1 and

the simple average is
3σ2

1 − σ2
2

4
− σ12

2
, which will be negative if and only

σ2
1 <

σ2
2 + 2σ12

3
. (15)

That is, when k = 2, the model with the lowest forecast variance will outperform a

simple average if and only if the above inequality hold. If σ12 = 0, the inequality

reduces to the case under Corollary 1. An interesting observation is that the inequality
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is more likely to hold when σ12 > 0 than when σ12 < 0. This justifies the conventional

belief that forecast combination between diversified forecasts tends to perform better.

The inequality also holds when σ12 ≥ σ2
2, but this cannot be the case since σ1 < σ2 by

assumption and σ12 ≤ σ1σ2 by the Hölder’s Inequality. Therefore equation (15) gives

the maximum bound of σ2
1 in order for an individual model to outperform the simple

average when k = 2.

3.3 Estimation error

Recently, Smith and Wallis (2009) and Vasnev et al. (2014) have demonstrated that

the reason for the poor performance of optimal weights relative to a simple average in

applications is tied to the effect of estimation errors, at least in the MSFE case. This

facts can be simply demonstrated by using the bilinear form. Let âT = a + εεεT be an

estimator of a where εεεT denotes the estimation error of a from a finite sample of T

observations. So that the bilinear form can be written as

dV =

(
âT +

i

k

)′
ΩΩΩ

(
âT −

i

k

)
(16)

=

(
a +

i

k

)′
ΩΩΩ

(
a− i

k

)
+ εεε′TΩΩΩεεεT (17)

=dV0 + εεεTΩΩΩεεεT . (18)

where dV0 =
(
a + i

k

)′
ΩΩΩ
(
a− i

k

)
< 0. Since ΩΩΩ is positive semi definite, εεε′TΩΩΩεεεT ≥ 0,

and therefore dV can be greater 0 if εεε′TΩΩΩεεεT > |dV0|. That is, the simple average can

outperform the estimated optimal weight if the estimation error of the optimal weight

is large. This is consistent with the result given in Vasnev et al. (2014). If εεεT = op(1),

εεεT = op(1) implies that εεε′TΩΩΩεεεT = op(1) by the Continuous Mapping Theorem. Thus,

dV based on estimated weight will converge in probability to dV0. However if εεεT is not

op(1) or has a very slow rate of convergence, then dV may be severely biased in finite

and small sample, respectively.

This also corroborates the findings of Smith and Wallis (2009) that the reason for

the poor performance of optimal weights relative to taking a simple average in finite
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sample is tied up with the estimation error generated when estimating the weights.

The properties of forecast combinations with optimal weights are derived under the

assumption that the combination weights are fixed and ignore that the weights have to

be estimated. Vasnev et al. (2014) provides the theory that shows that when accounting

for the optimal weights estimation, the forecast combination can be biased and its

variance larger than assuming the weights are fixed.

The current framework provides an insight on the source of estimator error. The

computation of the optimal weight often involves ΩΩΩ which is usually not known in

practice and therefore it must be estimated based on the forecast errors from individual

models, namely, νit = ν0t + uit. Recalled a natural estimator for ΩΩΩν is Ω̂ΩΩν as defined in

equation (7), which is consistent if

T−1ννν ′0ννν0 − σ2
ν = op(1) and T−1u′u−ΩΩΩ = op(1).

While the convergence of T−1ννν ′0ννν0 is ensured by Assumption (i), the convergence of

T−1u′u requires further assumption due to possible serial correlation in uit. Moreover,

even if the appropriate conditions are satisfied, T is generally small and therefore,

estimation errors are likely to be substantial in most practical situations.

Another insight relates to the relative performance between the optimal weight,

estimated optimal weight and simple average. If we consider the fact that forecast

combination is itself a forecasting model, then forecasts based on optimal weight and

simple average can be considered as two competing forecast models. Let ΣΣΣν be the

variance-covariance matrix of the forecast errors from combining the optimal weight

and the simple average models, that is

ΣΣΣν = σ2
νii
′ + ΣΣΣ (19)

where

ΣΣΣ =

(
a′ΩΩΩa k−1a′ΩΩΩi

k−1a′ΩΩΩi k−2i′ΩΩΩi

)
. (20)

It is possible to choose an optimal weight vector b = (b, 1− b) to minimise x′ΣΣΣνx. Note

that b has the interpretation of the number of times one should use the forecast from
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optimal weight in order to minimise the forecast errors in the MSFE sense. It is clear

from this interpretation that the only time when forecasts from the optimal weight will

always outperform forecast from simple average is when b = 1, which occurs if and only

if a′ΩΩΩa = k−1a′ΩΩΩi. This means that even when the optimal weight can be obtained

without any estimation error, there will be times when simple average outperforms the

optimal weight. Furthermore, it is possible to derive an expression relating b with the

estimator error as shown in Proposition 3.

Proposition 3. Let Σ̃ΣΣν = ΣΣΣν + ΛΛΛ where

ΛΛΛ =

(
λ11 λ12

λ12 0

)

denotes the deviation from ΣΣΣν due to the estimation error of a. Let b be the vector

that minimises x′ΣΣΣνx such that i′b = 1. Then

db = − 1

∆
dλ11 +

(
2b− 1

∆

)
dλ12 (21)

where ∆ = a′ΩΩΩa + k−2i′ΩΩΩi − 2k−1a′ΩΩΩi. Furthermore, db > 0 if and only if dλ11 ≤
(2b− 1) dλ12.

Proof. See Appendix.

The last line in Proposition 3 implies that the estimated weight may perform better in

the presence of increasing estimation error if and only if dλ11 ≤ (2b− 1) dλ12 but this

cannot happen due to Hölder’s Inequality. Therefore, the presence of estimation error

will always improve the performance of the simple average relative to the estimated

optimal weight.

Given this result, it would appear important to examine if the simple average does

in fact produce significantly better results than the estimated optimal weight. The

simple test, inspired by the bilinear form, will be introduced in the next section.
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4 Continuous and non-differentiable forecast evaluation criteria

The results from previous section explicitly assumed that the forecast criteria are

differentiable functions. However, there are many forecast criteria that do not satisfy

differentiability. One of such criteria is Mean Absolute Deviation, which is defined to

be

MAD = T−1
T∑
t=1

|ut|. (22)

Recall that the forecast errors from the forecast combination can be expressed as :

ua = Y a− F

and therefore the MAD can be expressed as

MAD = T−1
T∑
t=1

|u′ta|. (23)

Define wt = |u′ta|It and vt = |u′ta| (1− It) where It = I (u′ta ≥ 0) is an indication

function with I(A) = 1 if A is true and 0 otherwise. The problem of selecting a in order

to minimise MAD as defined in equation (23) can be written as a linear programming

problem:

a = arg max
x∈X

i′

T
w +

i′

T
v (24)

subject to −w + v + u′x =0 (25)

i′x =1 (26)

where w = (w1, · · · , wT )′ and v = (v1, · · · , vT )′. Let b =
(
0′T×1, 1

)′
and

A =

(
−IT IT u

01×T 01×T iT

)
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then the linear programming problem can be written in the standard form:

a = arg max
x∈X

z = c′x

subject to Ax =b

where c = T−1 (i′2T ,0
′
k)
′ and x = (w′,v′, x′)′. By the Fundamental Theorem of Linear

Programming, it is clear that if there is a optimal feasible solution, there is an optimal

basic feasible solution. Lets’ consider a feasible solution where only one model was

selected. Without loss of generality, let assume the first model was selected, that is

x = e1. Note that if wt > 0 then vt = 0 and vice versa by definition. Therefore, there

will be exactly T non-zero elements from (w′,v′)′ to form a basic feasible solution.

Moreover, if wt > 0 then wt = u1t and if vt > 0 then vt = |u1t|. Since the index order in

x is arbitrary, it is always possible to rewrite the basic feasible solution in the following

form: [
B,D

] [xB

xD

]
=

[
0T

1

]

where xB = (w′B,v
′
B, 1)′ consists of all the non-zero elements in x,

B =

[
KαI u1t

0′T 1

]

D =

[
KβI u−1t

0′T 0′k−1

]

with KαI = diag
(
(−1)1−I1t

)
, with Iit = I (uit < 0) and I (A) is an indication function

such that it equals to 1 if A is true and 0 otherwise.

The objective function evaluated at this basic feasible solution is z = c′BxB + c′DxD =

c′BxB, where xD corresponds to all the zero elements in x at this particular basic

feasible solution. Note that BxB + DxD = b where b = (0′T , 1)′ and therefore it is

straightforward to show that the changes in the objective function when changing from
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one basic feasible solution to another is

δ =
(
c′D − c′BB−1D

)
xD. (27)

Obviously, the change of basic feasible solution is only appropriate if δ < 0 and there-

fore, a necessary condition for forecast combination to outperform single model forecast

is that at least one element in c′D − c′BB−1D is less than 0.

Proposition 4. If ∃j = 1, ..., k with j 6= i such that T−1
∑T

t=1 (−1)Iit (ujt − uit) < 0,

then the weighted average of the forecasts from models i and j will outperform forecast

from model i alone based on mean absolute errors.

Note that the condition implies that δj < 0 if uit and ujt have the opposite signs or

if |ujt| < |uit| if Iit = Ijt on average. This make intuitive sense as either condition

will reduce mean absolute error when model j is included in the forecasts. It also

supports the claims that combining models with contradictory forecasts will reduce

forecast errors on average.

Proposition 5. Under the Fundamental Theorem of Linear Programming, if there is

an optimal solution then there must be a optimal basic feasible solution. This means

for k different models, a necessary condition for simple average to be optimal is that

the forecast errors from the forecast combinations are 0 for at least k periods.

5 Conclusion

This paper established several theoretical results concerning forecast combinations.

By setting up the forecast combination problem as a panel data model, the paper was

able to provide the necessary and sufficient condition for optimal weight as well as the

necessary and sufficient condition for simple average to be the optimal weight under

Mean Squared Forecast Errors (MSFE). It also provided theoretical justifications on

the superior forecast performance of simple average or individual models in the MSFE

sense. The paper also provided a theoretical exposition on the relative performance of

simple average and estimated optimal weight. The results show that the performance
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of simple average can often outperform the estimated optimal weight in the presence of

estimation error. This theoretical justification is consistent with the empirical obser-

vation that the simple average often has superior performance over estimated optimal

weight.

The paper also investigated the forecast combination problem under Mean Absolute

Deviation (MAD). By applying the Fundamental Theorem of Linear Programming, the

paper was able to establish the necessary and sufficient condition for the simple average

to outperform a single model in the MAD sense. This result is new and the method

adopted in the paper might suggest a feasible way to analyse the forecast combination

problems for non-differentiable forecast criteria further.

A Proofs

Proof of Proposition 1: Recall that

x′ΩΩΩνx =x′
(
σ2
νii
′ + ΩΩΩ

)
x

=σ2
νx
′ii′x + x′ΩΩΩx.

Since σ2
ν denotes the forecast variance from the best model and if there exists x

such that x′i 6= 1 and x′ΩΩΩνx− σ2
ν < 0 then

σ2
ν (1− x′ii′x) > x′ΩΩΩx i′a 6= 1. (28)

The inequality cannot hold if i′x > 1 since it implies σ2
ν < 0. Thus the only remaining

case is x′i < 1. Let’s consider the following minimisation problem:

a = arg min
x

x′ΩΩΩνx s.t. x′i− 1 ≤ 0.
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The associated Lagrangian is L = x′ΩΩΩx − λ (x′i− 1). Evaluate at the optimal point,

a, the Karush-Kuhn-Tucker conditions give:

ΩΩΩa− λi =0

λ ≥0

λ (a′i− 1) =0.

The last line implies that either λ = 0 or a′i = 1. Consider the case λ = 0, this implies

ΩΩΩa = 0. Since ΩΩΩ has full rank, this implies a = 0 which cannot be the case. Hence,

a′i = 1 which implies the optimal weight must be an affine combination. Hence, the

forecast variance from a linear combination of k competing forecasts cannot be less

than the forecast variance from the best model. This completes the proof. �

Proof of Proposition 2: Replace a by k−1i yields the result. This completes the

proof. �

Proof of Corollary 1: Using equation (10), it is straightforward to show that

aj
ai

=
σ2
i

σ2
j

∀i, j = 1, ..., k.

Note that a = i/k if and only if σ2
i = σ2

j for all i and j which reduces to Case I. This

completes the first part of the proposition. To show the second part, it is sufficient to

derive the condition such that dV (ej, k
−1i;ΩΩΩ) ≤ 0:

dV =
(
ej − k−1i

)′
ΩΩΩ
(
ej − k−1i

)
=− σ2

1

k2
− · · · −

(
1

k2
− 1

)
σ2
j − · · · −

σ2
k

k2
(29)

=σ2
j −

1

k2

k∑
i=1

σ2
i . (30)

The last line suggests that, dV ≤ 0, that is, a single model j can perform at least as
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well as a simple average when

σ2
j

(
k∑
i=1

σ2
i

)−1
≤ 1

k2
. (31)

Notice that by defining σ̄2 = k−1
∑k

i=1 σ
2
i and rewriting equation (31) as

σ2
j ≤

σ̄2

k
,

This completes the proof. �

Proof of Corollary 2: The performance of the simple average relative to a single

model is gauged by the relative efficiency measure dV as defined in equation (11). This

gives:

dV
(
er, k

−1i;ΩΩΩ
)

=

(
er +

i

k

)′
ΩΩΩ

(
er −

i

k

)
.

Without loss of generality, set r = 1 which means that

dV
(
e1, k

−1i;ΩΩΩ
)

=
1

k2
(
k + 1, i′k−1

)
ΩΩΩ
(
k − 1, i′k−1

)′
.

Let x =
(
k + 1, i′k−1

)
and z =

(
k − 1, i′k−1

)
and re-write dV in terms of its elements
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gives:

dV
(
e1, k

−1i;ΩΩΩ
)

=k−2
k∑
i=1

k∑
j=1

σijxizj

=k−2

(
k∑
j=1

σ1jx1zj +
k∑
i=2

k∑
j=1

σijxizj

)

=k−2

(
σ11x1z1 +

k∑
j=2

σ1jx1zj +
k∑
i=2

σi1xiz1 +
k∑
i=2

k∑
j=2

σijxizj

)

=

(
k2 − 1

k2

)
σ11 −

k∑
j=2

k + 1

k2
σ1j +

k∑
i=2

k − 1

k2
σi1 −

k∑
i=2

k∑
j=2

1

k2
σij

=σ11 −
1

k2
σ11 −

k∑
j=2

2

k2
σ1j −

k∑
i=2

k∑
j=2

1

k2
σij

=σ11 −
k∑
i=1

1

k2
σii −

k∑
j=2

2

k2
σ1j − 2

k∑
i=2

k∑
j>i

1

k2
σij

=σ11 −
σ̄

k
− 2

k
σ̄1 −

2

k
σ̄ij.

This completes the proof. �

Proof of Proposition 3: Let b1 = (b1, 1− b1) that minimises x′Σ̃ΣΣνx, then

b1 =
a′ΩΩΩa− k−1a′ΩΩΩi− λ12

∆ + λ11 − 2λ12
. (32)

Totally differentiate b1 with respective to λ11 and λ12 and evaluate the derivatives at

(λ11, λ12) = (0, 0) gives the first part of the proposition. For the second part, simply

set db > 0 then rearrange will yield the result. This completes the proof. �

Proof of Proposition 4: It is sufficient to verify that T−1
∑T

t=1 (−1)Iit (ujt − uit) < 0

will ensure that the j element in the relative cost vector, c′D−c′BB−1D, is less than zero.

Without loss of generality, let i = 1, define xB = (w′B,v
′
B, 1)′ and xD

(
w′D,v

′
D,0

′
k−1
)′

such that wB is a vector consists of elements in w corresponding to the positive elements

in u1t > 0. Similarly, vB is a vector consists of elements in v corresponding to negative
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elements in u1t < 0. Therefore xB forms a basic feasible solution equivalent to selecting

the first model with the objective function equivalent to the mean absolute error in

model 1. Define also u−1 = (u2, ...,uk) as a T × (k − 1) matrix consists of all forecast

errors from the remaining models.

Given this, forecast combination will improve mean absolute error, if one of the

elements in xD moves in to the basic feasible solution. However, this would also mean

that one of the element in wB and vB will move out from the basic feasible solution.

This means that the forecast errors at least one time period will be zero when combining

forecasts.

Note that

c′D − c′BB−1D

=
[
i′T
T

0′k−1

]
−
[
i′T
T

0
] [KαI u1

0′T 1

]−1 [
kβI u−1

0′T i′k−1

]

=
[
i′T
T

0′k−1

]
−
[
i′T
T

0
] [KαI KβIu1

0′T 1

][
kβI u−1

0′T i′k−1

]
=
[
2
i′T
T
− i′T

T
KαI

(
u−1 − u1i

′
k−1
)]

The last k − 1 elements in the vector can be written as

T−1
T∑
t=1

(−1)I1t (ujt − u1t) ,

and therefore, forecast combination can reduce mean absolute error if ∃j 6= i such that

δj = T−1
T∑
t=1

(−1)Iit (ujt − uit) < 0.

This completes the proof. �
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