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Abstract

This paper considers the problem of estimating a structural model of optimal life-cycle sav-

ings, controlling both for uncertainty about health-care expenditures and household risk aversion.

To avoid misleading inference, we propose a new estimation technique that compared to those

already proposed in the literature enables us to deal simultaneously with the presence of (i) un-

observed cross-sectional heterogeneity, (ii) flexible unknown form in the Euler equation and (iii)

endogenous covariates. We propose one-step backfitting estimators based on first differencing

techniques that are combined through a minimum distance estimation approach. The resulting

estimators are shown to be oracle efficient and they exhibit the optimal rate of convergence

for this smoothness problem. To illustrate the feasibility and possible gains of this method, we

present an application about household’s precautionary savings over the life-cycle. From this

empirical application, we obtain (i) households accumulate wealth at least in two periods in life.

In younger stages, in order to guard against uncertainty about potential income downturns, and

when they become older due to other reasons such as retirement and bequests. (ii) Public health

programs have a negative impact on precautionary savings. The paper concludes with a Monte

Carlo simulation where the small sample properties of the estimators. [1]
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1 Introduction

This paper is focused on the evaluation of the potential impact of both the age of the individuals and

their risk aversion on household savings. In order to maintain a constant utility level in all periods,

the life-cycle hypothesis model (LCH henceforth) of Modigliani and Brumberg (1954) states that,

there is a hump-shaped age-saving profile since individuals tend to save from the middle of their life

until retirement and dissave in younger and older ages. In this context, savings turn on a protection

tool against unforeseen adverse conditions and as the result of the prudent behavior of households.

Then, we note that households save primarily for two reasons, to finance expenses after retirement

(life cycle motive) and to protect consumption against unexpected shocks (precautionary motive).

In the past two decades, there have been a plethora of empirical studies that have sought to improve

our understanding about optimal household consumption and its behavior under various sources

of uncertainty; see Starr-McCluer (1996), Gruber (1997), Egen and Gruber (2001), Gertler and

Gruber (2002) or Gourinchas and Parker (2002), among others. Nevertheless, many of these em-

pirical studies have been criticized with regard to its lack of robustness against different types of

misspecification errors.

The sources of misspecification that are typically ignored can be grouped into three major weak-

nesses. First, the effect of the individual preferences is a relevant aspect when we try to model

the household behavior. In the regression model, it usually appears in the form of unobserved

heterogeneity, but unfortunately most of these studies omit this topic. Second, uncertainty about

household’s out-of-pocket medical expenses is a relevant issue for preventive savings, as it is noted

in Palumbo (1999), and the decision of how much to spend depends on some social and demo-

graphic features of the household. Considering this variable as exogenous can lead to inconsistent

estimators of the parameters (functions) of interest. Finally, these models are usually based on a

log-linearized Euler equation that is captured in the form of a fully parametric model. However,

as it is noted in Attanasio et al. (1999) this rigid functional form can be a poor approximation

to the marginal utility (smooth) function and more flexible procedures such as nonparametric and

semi-parametric models are more suitable; see Chou et al. (2004), Maynard and Qiu (2009), Gao

et al. (2012) or Kuan and Chen (2013). Unfortunately, these latter studies do not consider either

individual heterogeneity nor endogeneity.

The aim of this paper is to contribute to the literature on precautionary savings providing a solution

to the main weaknesses discussed previously. For this, we propose to extend a semiparametric LCH

model as the one developed in Chou et al. (2004) to the analysis of flexible panel data models under

the following particularities: (i) presence of fixed effects; (ii) varying coefficient form in the Euler

equation allowed to capture the potential relationship between the endogenous and the explanatory

variable; and (iii) health-care spending endogenously determined. To our knowledge, the estimation

procedure that we develop in this paper is the first that enables us to estimate directly the impact of

different types of uncertainty on the household precautionary savings in a panel data context with

fixed effects and endogenous regressors without resorting to restrictive assumptions about functional
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forms, such as it is common with the well-known log-linearized version of the Euler equation.

Specifically, the general idea that we propose with this new procedure is to estimate the unknown

functions of interest through a simple estimator based on differencing techniques. Also, to cope

with the endogeneity issue we use as explanatory variables the predicted values of the (possibly)

endogenous variables generated from the nonparametric estimation of the reduced form equation.

We establish that the resulting nonparametric local constant IV estimator is consistent and asymp-

totically normal but achieves a slower rate of convergence. The reason is that a bivariate kernel

weight is needed to control the distance between the fixed term of the approximation of the unknown

function and all the values of the sample but the variance of the estimator is enlarged.

In order to avoid the previous difficulties, following the ideas of Fan and Zhang (1999), we develop

a one-step backfitting procedure. It turns out that the resulting estimator is oracle efficient and it

exhibits an optimal rate of convergence. However, because of the additive form of the regression

model two alternative consistent estimators for the same unknown function are obtained. With the

aim of improving the efficiency we combine both estimators through a minimum distance estimation

technique and hence, the resulting estimator is oracle efficient and achieves the optimal rate of

convergence.

Direct nonparametric estimation of differencing panel data models has been considered as rather

cumbersome in the literature; see Su and Ullah (2011). The reason is that, for each individual, we

have an additive function with the same functional form at different times. In Henderson et al.

(2008) the problem is solved using profile likelihood techniques, in Su and Lu (2013) the estimator

comes out as the solution of a second order Friedholm integral equation whereas in Rodriguez-

Poo and Soberon (2014, 2015) a direct strategy is proposed. Unfortunately, all these estimators

are asymptotically biased in the presence of endogeneity. On its part, some IV methods have

been proposed in the context of nonparametric panel data varying coefficient models with random

effects. In Cai and Li (2008) it is proposed to estimate the nonparametric functions using the

so-called nonparametric generalized method of moments. However, this method does not control

for heterogeneity when it is correlated with some explanatory variables, and hence it renders to

asymptotically biased estimators when fixed effects are present.

To show the feasibility and possible gains of this new procedure, we first study the optimal con-

sumption decision problem of the Spanish household from 1985 to 1996. Later, we investigate the

finite sample properties of the estimators. Nowadays, in the empirical studies there is a substantial

interest in investigating the determinants of population welfare. Therefore, allowing health-care

expenditures to have a different impact on household behavior depending on their age-group is an

issue of great importance specially to political considerations.

The structure of this paper is as follows. Section 2 lays out a theoretical framework for consumer

maximization. In Section 3 we set up the econometric model and the estimation procedures. In

Section 4 we study the statistical properties of the previous estimators. Section 5 provides more

efficient estimators such as one-step backfitting and minimum distance estimators. In Section 6 we
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apply our proposed estimation procedures to a standard LCH model and we present some simulation

results to investigate their finite sample performance. Finally, Section 7 concludes the paper. The

proofs of the main results are collected in the Appendix.

2 Conceptual framework and econometric model

Along with liquidity constraints and habits in consumer preferences, uncertainty about possible

economic hardships and household risk aversion are key determinants of household’s consump-

tion/saving decisions; see Friedman (1957). According to Eurostat data, health-care expenditures

of U.S. households represent a 16.4% of their total consumption in 1986 and a 17% in 1996, while

in Spain these expenses are about a 3.4% of the total in 1986 and 5.9% in 1996. This signifi-

cant impact of health-care expenditures on household’s wealth coupled with their persistent and

increasing behavior with the age of the individuals make them a significant part of this uncertainty.

Precautionary savings appears as an instrument of protection against potential income downturns

or unforeseen out-of-pocket medical expenses in the latter stages of life, see Chou et al. (2003).

The aim of this section is to analyze how unexpected health expenditures influence households’

savings through a stochastic LCH model, see Blanchard and Fisher (1989) and Deaton (1992).

Specifically, we solve the basic problem of the consumer i at the time t in the presence of uncertainty

and some endogenous covariates. We assume that individuals live T periods, work during the first

T − 1 periods and at each work period t they receive a stochastic income Iit and incur in an out-

of-pocket health-care expenditure Wit. If Wit were known, households would decide how to spend

their income between consumption Cit and financial wealth Ait by maximizing an additively time-

separable utility that has a positive third-order derivative (U ′′′(·) > 0), see Chou et al. (2004) for

further details. Thus, according to Caballero (1990) we use a negative exponential utility function

assuming that the degree of absolute risk aversion and absolute prudence are both constant and

equal to α.

Therefore, the i-th household maximizes the following problem at time t = 0,

max
Cit

E0

[
N∑
i=1

T−1∑
t=0

(
− 1

αi

)
exp(−αiCit)

]
, (2.1)

subject to

Ai(t+1) = Ait + Iit −Wit − Cit,
Wit = Wi(t−1) + εit ; εit ∼ N

(
0, σ2

ε

)
,

(2.2)

where health-care expenditures are modeled as a random walk. For the sake of simplicity, we assume

there do not exist liquidity constraints so the discount and the interest rate are equal to zero. Then,

taking first-order conditions in (2.1) the expected consumption is

Ci(t+1) = Cit +
αiσ

2
ε

2
+ εi(t+1), (2.3)
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and combining this result with the inter-temporal budget restriction (2.2) the optimal level of

consumption is

Cit =
1

T − t
Ait + (Iit −Wit)−

αi(T − t− 1)σ2
ε

4
, (2.4)

where (Iit−Wit−Cit) is the level of precautionary savings and αi(T − t− 1)σ2
ε /4 reflects the effect

of uncertainty. We do not enter in the debate about the importance of retirement versus bequests

reasons, so the measurement of retirement that we use implicity includes both.

Analyzing in detail the optimal consumption expression (2.4), we can highlight that increases in

uncertainty about future medical expenses σ2
ε or in the degree of risk aversion αi, together with a

broad horizon of life (T−t−1), will lead to smaller consumption and greater precautionary savings so

households turn on buffer-stock agents against potential adversities. On the other hand, if we focus

on the expected consumption, equation (2.3), we observe that higher risk about unforeseen medical

expenses σ2
ε or larger risk aversion αi causes a steeper consumption path. Also, in those countries

where national health programs exist σ2
ε is close to zero and therefore consumption profile upward

proportionally to (T − t−1)/4. In other words, younger households will increase their consumption

level since their incentives to save seem to be only related to potential income downturns.

Based on the previous findings we notice that households’ consumption path varies in a nonlinear

way with the age of individuals, however there are other issues such as uncertainty about unforeseen

medical expenses, σ2
ε , and risk aversion, αi, that are relevant; see, e.g., Hubbard et al. (1994),

Carroll (1997) or Deaton (1992), among others. More precisely, in our model we will assume that

both σ2
ε and αi are age-dependent parameters since the risk of incur in an out-of pocket health-

care expenditure increases with the age of the individuals, whereas the wealth profile against age is

usually hump-shaped over the life cycle with some peaks close to retirement. Thus, we can highlight

that household consumption profile over the life cycle varies mainly for two reasons (i) for a life

cycle motive relates with the age of the households (ii) and for precautionary savings.

Therefore, in order to determine the effect of uncertainty on households precautionary savings we

extend the specification of Chou et al. (2004) to a panel data context with endogenous covariates

so the model to estimate in this paper is

Yit = α(Zit) +W>itm1(Zit) + U>itm2(Zit) + µi + vit,

Wit = g(Xit) + ζi + ξit,
(2.5)

for i = 1, · · · , N and t = 1, · · · , T , where vit and ξit are the idiosyncratic error terms whereas

µi and ζi reflects the unobserved individual heterogeneity. Also, precautionary savings Y (i.e.,

income I minus consumption C) and health-care expenditures W are endogenously determined

through the age of the household head Z, some financial wealth measurement U , and a vector

of their demographic features X (i.e., age of the household head, number of children and so on).

In this sense, household savings are characterized by the risk aversion of the family related with

the age, α(·), uncertainty about future health-care expenses, m1(·), and uncertainty about income

downturns, m2(·).
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The previous model can be extended to allow for several endogenous covariates. Assume that Zit,

Wit, Uit and Xit are vectors of covariates of dimension q × 1, (M − 1)× 1, a× 1 and b× 1, respec-

tively. Furthermore, α(Z) is an unknown function, m1(Z) and g(X) are (M − 1) × 1 dimensional

vectors and m2(Z) is a a × 1 vector of unknown forms to estimate. Let Z = (Z11, · · · , ZNT ),

X = (X11, · · · , XNT ), U = (U11, · · · , UNT ), W = (W11, · · · ,WNT ), Y = (Y11, · · · , YNT ) be NT × 1

vectors, without loss of generality we assume

E(vit|Z,U) = 0, E(ξit|X) = 0, E(vit|ξit) 6= 0, (2.6)

E(µi|Z,W,U) 6= 0, E(ζi|X) 6= 0. (2.7)

The econometric model specified in (2.5) is well-known in the literature of households precautionary

behavior however the presence of both endogenous variables and unobserved individual heterogene-

ity is not considered. There have been many empirical studies that have tried to examine the

relationship between household precautionary savings and uncertainty but without achieving con-

clusive results. Gourinchas and Parker (2002) confirm the patterns established by the LCH model.

They find that early in life U.S. households behave as buffers-stock agents and accumulate wealth

to face to unexpected income downturns, whereas around the age forty these savings are mainly

for retirement and legacy. Also, in Cagetti (2003) the role of precautionary savings is determined

to explain the behavior of household wealth. This effect is particularly relevant at the beginning of

household’s life, whereas close to retirement savings are more related to the aim of the households

of maintaining a constant level of utility in all periods of life. Also, different papers have considered

the impact of specific sources of uncertainty. In this way, in Starr-McCluer (1996) and Egen and

Gruber (2001) it was found out that a reduction in the level of uncertainty, for example through

unemployment insurance or public health programs, has a negative impact on households savings.

On the other hand, in Gruber (1997) and Gertler and Gruber (2002) it was established that these

type of programs smooth individual consumption. Recently, in Chou et al. (2004) it was shown

that public health programs do have a negative effect on household savings. Furthermore, in Kuan

and Chen (2013) it is shown that public health programs do have more impact on those household

with higher incomes.

However, as we state previously, despite the interesting results of these studies they ignore some

sources of misspecification that can override their conclusions, such as the endogeneity issue of the

household’s consumption decisions or the unobserved individual heterogeneity. Therefore, the aim

of the method that we propose in this paper is to overcome such problems in order to estimate

the impact of both types of uncertainty on household’s precautionary savings; i.e., household risk

aversion and unforseen health-care expenses.
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3 Estimation procedure

Any attempt to estimate directly the unknown functions of (2.5) through standard nonparametric

estimation techniques will render to inconsistent estimators of the underlying curves because of two

reasons. On one hand, since µi is allowed to be correlated with Zit,Wit and/or Uit, and ζi with

Xit, we get E(µi|Zit = z,Wit = w,Uit = u) 6= 0 and E(ζi|Xit = x) 6= 0. On the other hand,

E(vit|ξit) 6= 0 is assumed so the endogeneity problem of the model comes from the correlation

between the idiosyncratic error terms of the M equations of (2.5).

In order to overcome the problem of the statistical dependence between the unobserved individual

heterogeneity and the explanatory variables, we take the standard solution of removing the fixed

effects by the first difference transformation, i.e.,

∆Yit = α(Zit, Zi(t−1)) +
(
W>itm1(Zit)−W>i(t−1)m1(Zi(t−1))

)
+
(
U>itm2(Zit)− U>i(t−1)m2(Zi(t−1))

)
+∆vit, (3.1)

∆Wit = g(Xit, Xi(t−1)) + ∆ξit,

for i = 1, · · · , N and t = 2, · · · , T , where α(·) and g(·) are IR2q → IR and IR2b → IR additive

functions to estimate, α(Zit, Zi(t−1)) = α(Zit)−α(Zi(t−1)) and g(Xit, Xi(t−1)) = g(Xit)−g(Xi(t−1)),

respectively.

As it is noted in Su and Ullah (2011), direct nonparametric estimation of these unknown func-

tions has been considered as rather cumbersome since the conditional expectation of ∆Yit over

(Zit, Zi(t−1)) contains linear combinations of W>itm1(Zit) and U>itm2(Zit) for different t. There-

fore, the kernel estimation requires some iterative procedures such as the backfitting algorithm or

the marginal integration method and the asymptotic analysis of the resulting estimator is harder.

In order to overcome this problem, several alternatives have been proposed. In Rodriguez-Poo

and Soberon (2014, 2015) two-stage differencing techniques are proposed to obtain consistent and

asymptotically optimal estimators of both functions and parameters of interest. Unfortunately,

their proposal fail when endogenous covariates are considered in the econometric specification.

To illustrate our new proposal, consider the simplest case with q = (M − 1) = a = b = 1. The

Taylor approximation in (3.1) for any z ∈ A, being A a compact subset in a nonempty interior of

IR, implies

α(Zit, Zi(t−1)) ≈ α′(z)∆Zit +
1

2
α′′(z)

(
(Zit − z)2 − (Zi(t−1) − z)2

)
+ · · ·+

+
1

p!
α(p)(z)

(
(Zit − z)p − (Zi(t−1) − z)p

)
,

Witm1(Zit)−Wi(t−1)m1(Zi(t−1)) ≈ ∆Witm1(z) +
(
Wit(Zit − z)−Wi(t−1)(Zi(t−1) − z)

)
m′1(z) +

+
1

2

(
Wit(Zit − z)2 −Wi(t−1)(Zi(t−1) − z)2

)
m′′1(z) + · · ·+

+
1

p!

(
Wit(Zit − z)p −Wi(t−1)(Zi(t−1) − z)p

)
m

(p)
1 (z),
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and similarly for Uitm2(Zit)−Ui(t−1)m2(Zi(t−1)). Looking at these approximations we realize that

we can estimate α′(z), · · · , α(p)(z),m1(z),m′1(z), · · · ,m(p)
1 (z),m2(z), m′2(z), · · · ,m(p)

2 (z) by regress-

ing ∆Yit on the terms of the right-hand side of these approximations with kernel weights. Clearly,

m(·) is identified but α(·) is not. This is due to the additive structure of the differencing procedure

and it leads us to estimate these components by separate.

In this situation, the quantities of interest can be estimated using the following local constant

regression, also denoted as a Nadaraya-Watson estimator,

N∑
i=1

T∑
t=2

(
∆Yit −∆W>it β1 −∆U>it β2

)2
KH(Zit − z)KH(Zi(t−1) − z), (3.2)

where H is a q × q symmetric positive definite bandwidth matrix and K is a q-variate such that

KH(u) =
1

|H|1/2
K
(
H−1/2u

)
,

see Nadaraya (1964), Watson (1964) and Fan and Gijbels (1995) for further details. Let β̂1 and

β̂2 be the minimizers of (3.2). The above exposition suggests as estimator for β1 = m1(z) and

β2 = m2(z), m̂1(z, z;H2) = β̂1 and m̂2(z, z;H2) = β̂2.

Unfortunately, despite the resulting estimator of (3.2) is robust to fixed effects (see Rodriguez-

Poo and Soberon (2014, 2015) for further details), it is still biased due to endogeneity. When

E(vit|ξit) 6= 0 we cannot estimate consistently the unknown functions of the structural equations

(3.1) by projecting ∆Yit over

α(Zit, Zi(t−1)) +
(
W>itm1(Zit)−W>i(t−1)m1(Zi(t−1))

)
+
(
U>itm2(Zit)− U>i(t−1)m2(Zi(t−1))

)
in the L2(Z,W,U) projection space. In order to solve this problem, we propose to use a b × 1

vector of IV; i.e., E(∆Wit|Xit, Xi(t−1)) = g(Xit, Xi(t−1)) = git,i(t−1).

To simplify notation, let us denote W̃>it = (W>it U>it ) and m(Zit) =
(
m1(Zit)

> m2(Zit)
>)> as d-

dimensional vectors, where d = (M −1)+a. Similar definitions are used for W̃i(t−1) and m(Zi(t−1)).

Thus, rearranging terms, (3.1) can be written as

∆Yit = α(Zit, Zi(t−1)) + W̃>itm(Zit)− W̃>i(t−1)m(Zi(t−1)) + ∆vit

∆Wit = g(Xit, Xi(t−1)) + ∆ξit.
(3.3)

Let ∆W̃g,it =
(
g>it,i(t−1) ∆U>it

)>
be a d× 1 vector. Multiplying both sides of (3.3) by ∆W̃g,it and

taking conditional expectations on (Zit = z, Zi(t−1) = z) if E
[
∆W̃g,it∆W̃

>
it |Zit = z, Zi(t−1) = z

]
is

positive definite we obtain

m(z) = E
[
∆W̃g,it∆W̃

>
it |Zit = z, Zi(t−1) = z

]−1
E
[
∆W̃g,it∆Yit|Zit = z, Zi(t−1) = z

]
. (3.4)

Note that it is also necessary for identification that both E[∆Uit∆U
>
it |Zit = z, Zi(t−1) = z] and

E[git,i(t−1)g
>
it,i(t−1)|Zit = z, Zi(t−1) = z] are positive definite. As the reader can realize, this invert-

ibility condition is a generalization of the well-known rank condition of parametric models with

endogenous covariates that guarantees that m(·) is identified.
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To obtain a feasible estimator for m(z) we can replace git,i(t−1) in (3.4) by a consistent estimator,

i.e., ĝ(Xit, Xi(t−1);H1), where H1 is a bandwidth matrix. This estimator can be any nonparametric

smoother such as a local linear regression estimator, a spline smoothing or a sieve estimator. Later,

in Section 3 we will discuss some minimal set of assumptions that this estimator must fulfill in order

to guarantee that the resulting IV estimator exhibits the right asymptotic properties. For the sake

of simplicity let us denote ĝit,i(t−1) = ĝ(Xit, Xi(t−1);H1).

Let ∆W̃ĝ,it =
(
ĝ>it,i(t−1) ∆U>it

)>
be a d × 1 vector, the resulting local constant IV regression

estimator is

m̂ĝ(z, z;H2) =

(
m̂1ĝ(z, z;H2)

m̂2ĝ(z, z;H2)

)
=

(
N∑
i=1

T∑
t=2

KH2(Zit − z)KH2(Zi(t−1) − z)∆W̃ĝ,it∆W̃
>
it

)−1

×
N∑
i=1

T∑
t=2

KH2(Zit − z)KH2(Zi(t−1) − z)∆W̃ĝ,it∆Yit, (3.5)

where H2 is the corresponding bandwidth matrix.

Despite the standard nonparametric regression techniques, this estimator exhibits the peculiarity

that the kernel weights are related to both Zit and Zi(t−1). If we would have considered kernels

only around Zit, the remainder term in the Taylor’s approximation would not be negligible since

the distance between Zis (s 6= t) and z does not vanish asymptotically. Therefore, the asymptotic

bias would also be non-negligible. This phenomena was already pointed out in Mundra (2005) and

Lee and Mukherjee (2008), but it was solved in Rodriguez-Poo and Soberon (2014, 2015) in another

context.

Once the estimators of the functional coefficients are proposed, let us now turn to the estimation

of α(·). To this end, define

∆Ŷit = ∆Yit −∆W̃>ĝ,itm̂ĝ(Zit, Zi(t−1);H2), (3.6)

where m̂ĝ(Zit, Zi(t−1);H2) is the local constant IV regression estimator defined in (3.5). To simplify

notation let us write m̂ĝ(z, z;H2) = m̂ĝ(z;H2). If we substitute ∆Yit in (3.6) by (3.3) and take a

local constant approximation around m(·), it is possible to show that after rearranging terms we

get

∆Ŷit = α(Zit, Zi(t−1)) + ∆v̂it, i = 1, · · · , N ; t = 2, · · · , T, (3.7)

where

∆v̂it = ∆vit−
(

∆W̃ĝ,it −∆W̃it

)>
m̂ĝ(Zit, Zi(t−1);H2)−∆W̃>it

(
m̂ĝ(Zit, Zi(t−1);H2)−m(Zit, Zi(t−1))

)
.

In this fully nonparametric context, we propose to estimate α(·) using marginal integration tech-

niques. See Linton and Nielsen (1995) and Newey (1994). Recall that, since α(·) is unknown, when

we take first differences in (3.3) the object that can be identified is α(Zit, Zi(t−1)), although we know
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that α(Zit, Zi(t−1)) = α(Zit) − α(Zi(t−1)). Then, for any z1, z2 ∈ A we can estimate α(·) using a

multivariate kernel regression estimation technique, i.e.

α̂(z1, z2;H3) =

∑N
i=1

∑T
t=2KH3(Zit − z1)KH3(Zi(t−1) − z2)∆Ŷit∑N

i=1

∑T
t=2KH3(Zit − z1)KH3(Zi(t−1) − z2)

, (3.8)

where H3 is the bandwidth. Once obtained α̂(z1, z2;H3), as in Qian and Wang (2012), we proceed

to estimate α̂(z;H3) by marginally integrating (3.8) obtaining

α̂(z;H3) =

∫
IR
α̂(z, s;H3)q(s)ds, (3.9)

where q(·) is a pre-specified positive weighting function that satisfies
∫
IR q(s)ds = 1. For model

identification, following also Qian and Wang (2012) we assume that
∫
IR α(z)q(z)dz = 0. It is clear

that under these conditions α(z) is uniquely identified. i.e.∫
IR
α (z, s) q(s)ds = α(z)

∫
IR
q(s)ds−

∫
IR
α(s)q(s)ds = α(z).

Then, if NT is large enough and q(·) is chosen as the density function of Zit we can use the sample

version of (3.9) and propose the following estimator

α̂(z;H3) =
1

N(T − 1)

N∑
i=1

T∑
t=2

α̂(z, Zi(t−1)). (3.10)

4 Statistical properties

In this section, we investigate some asymptotic properties of the estimators proposed in the previous

section. For this, we need the following assumptions,

ASSUMPTION 4.1 Let (Yit, Uit,Wit, Zit, Xit)i=1,··· ,N ;t=1,··· ,T be a set of independent and identi-

cally distributed IR1+a+(M−1)+q+b-random variables in the subscript i for each fixed t and strictly

stationary over t for fixed i.

ASSUMPTION 4.2 Let fX1t (·) and fZ1t (·) be the probability density functions of Xit and Zit,

respectively. Moreover, let fX1t,X1(t−1)
(·, ·) and fZ1t,Z1(t−1)

(·, ·) be the probability density functions of(
X1t, X1(t−1)

)
and

(
Z1t, Z1(t−1)

)
, respectively. All density functions are continuously differentiable

in all their arguments and they are bounded from above and below in any point of their support.

ASSUMPTION 4.3 The random errors, vit and ξit, are independent and identically distributed,

with zero mean and homoscedastic variances, σ2
v < ∞ and σ2

ξ < ∞. They are also independent of

X, Z and U for all i and t, but E(vit|ξit) 6= 0. Furthermore, E|vit|2+δ <∞ and E|ξit|2+δ <∞, for

some δ > 0.
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ASSUMPTION 4.4 Let z be an interior point in the support of fZ1t (·). All second-order deriva-

tives of α(·) and m1(·), · · · ,md−1(·) are bounded and uniformly continuous and they satisfy a Lips-

chitz condition. Also, let (x1, x2) be interior points in the support of fX1t,X1(t−1)
(·, ·), all second-order

derivatives of g1(·, ·), · · · , gM−1(·, ·) are bounded and continuous.

ASSUMPTION 4.5 The bandwidth matrices H1 and H2 are symmetric and strictly definite posi-

tive. Also, let h1 and h2 be each entry of the matrices H1 and H2, respectively, h1 → 0 and

h2 → 0. As N → ∞, N |H1| → ∞, N |H2| → ∞, N |H1|/log(N) → ∞ and N |H2|/log(N) → ∞.

Furthermore, tr (H1) = op (tr (H2)).

ASSUMPTION 4.6 Let ‖A‖ =
√
tr (A>A), then E

[
‖W̃g,itW̃

>
g,it‖2|Zit = z1, Zi(t−1) = z2

]
is bounded

and uniformly continuous in its support. Also, let

Xg,it =
(
W̃>g,it, W̃>g,i(t−1)

)>
and ∆Xg,it =

(
∆W̃>g,it ∆W̃>g,i(t−1)

)>
,

whereas Xit and ∆Xit are defined similarly without the index g. Furthermore, the following matrix

functions E [∆Xg,it|z1, z2], E
[
∆Xg,itX>it |z1, z2

]
, E

[
∆Xg,it∆X>g,it|z1, z2

]
, E

[
∆Xg,it∆X>it |z1, z2

]
,

E [∆Xg,it|z1, z2, z3], E
[
∆Xg,itX>it |z1, z2, z3

]
, E
[
∆Xg,it∆X>g,it|z1, z2, z3

]
and E

[
∆Xg,it∆X>it |z1, z2, z3

]
are bounded and uniformly continuous in their support.

ASSUMPTION 4.7 The kernel function K is the product of univariate kernels, symmetric around

zero and compactly supported. Also, the kernel is bounded such that
∫
uu>K(u)du = µ2(K)I and∫

K2(u)du = R(K), where µ2(K) and R(K) are scalars and I the identity matrix. In addition,

all odd-order moments of K vanish, that is
∫
uι11 · · ·u

ιq
q K(u)du = 0, for all nonnegative integers

ι1, · · · , ιq such that their sum is odd.

ASSUMPTION 4.8 The following moment functions E
[
∆Uit∆U

>
it |Zit = z1, Zi(t−1) = z2

]
and

E
[
git,i(t−1)g

>
it,i(t−1)|Zit = z1, Zi(t−1) = z2

]
are positive definite in any interior point (z1, z2) in the

support of fZit,Zi(t−1)
(z1, z2).

ASSUMPTION 4.9 For some δ > 0, the functions E
[
|∆W̃g,itvit|2+δ|Zit = z1, Zi(t−1) = z2

]
,

E
[
|∆W̃g,itξ

>
it |2+δ|Zit = z1, Zi(t−1) = z2

]
and E

[
|∆W̃g,it∆W̃

>
g,itvitξit|1+δ/2|Zit = z1, Zi(t−1) = z2

]
are

bounded and uniformly continuous in any point of their support. These results hold for ξi(t−1) and

vi(t−1).

Assumption 4.1 is standard in the nonparametric panel data regression analysis and characterizes

the data generating process. In particular, it states that the individuals are independent and, for

a fixed individual, we allow for correlation along time. Other time-series structures can also be

considered; see, e.g., Cai and Li (2008) or Cai et al. (2009). Also, for the estimation of the fully
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nonlinear part in the one-step backfitting algorithm we need to impose some further assumptions

about the density functions than the usual Lipschitz continuity. Thus, Assumption 4.2 states

that density functions are bounded from above and below and at least first-order partially differ-

entiable with a Lipschitz-continuous remainder. In addition, it holds for fX1t,X1(t−1),X1(t−2)
(·, ·, ·)

and fZ1t,Z1(t−1),Z1(t−2)
(·, ·, ·), being the probability density functions of

(
Xit, Xi(t−1), Xi(t−2)

)
, and(

Zit, Zi(t−1), Zi(t−2)

)
, respectively. Assumption 4.3 combines standard conditions for simultaneous

equation systems allowing for correlation along time and between the error terms of the different

equations of the system.

Assumptions 4.4-4.7 are standard in the literature of local linear regression estimates, for which

the Nadaraya-Watson estimator is the local constant approximation; see Ruppert and Wand (1994).

Assumption 4.5 contains a standard bandwidth condition for smoothing techniques and some uni-

form converge results. Also, with tr (H1) = op (tr (H2)) we assume that m̂ĝ(z;H2) is not sensitive

to the choice of H1 and also we impose that the bandwidth H1 should be chosen small enough or,

at least, smaller than H2. Thus, the fitted model in the first-stage is under-smoothed and its bias

is not too large. Therefore, the conditions in 4.5 are enough to show the point-wise consistency of

the local constant IV estimator, see Cai (2002a,b) for further details.

Furthermore, by the smoothness and boundedness conditions established in Assumptions 4.2 and

4.4-4.8 for the kernel function, conditional moments and densities we are allowed to claim the uni-

form convergence results established in Masry (1996, Theorem 6). Assumption 4.8 is a generaliza-

tion of the usual rank condition for identification of simultaneous equation systems in a parametric

context and it implies that E
[
∆W̃g,it∆W̃

>
it |Zit = z, Zi(t−1) = z

]
is definite positive. Assumption

4.9 is required to show that the Lyapunov condition holds.

Under these assumptions we can establish the asymptotic normality of the local constant IV esti-

mator m̂ĝ(z;H2) for the standard case in which µ2(Ku) = µ2(Kv). The proof is relegated to the

Appendix.

THEOREM 4.1 Under Assumptions 4.1-4.9, as N tends to infinity and T is fixed√
N |H2|

(
m̂ĝ(z;H2)−m(z)−B(z;H2)

) d−−−→ N (0, V (z;H2)) ,

where

B(z;H2) = µ2(K)
[
diagd

(
Df (z)H2

√
N |H2|Dmr(z)

)
ıdf
−1
Zit,Zi(t−1)

(z, z)

+
1

2
diagd

(
tr
(
Hmr(z)H2

√
N |H2|

))
ıd

]
,

V (z;H2) = 2R(Ku)R(Kv)
(
σ2
v +m1(z)>Σ∆ξ∆ξm1(z) + Σ∆v∆ξm1(z)

)
×B−1

∆W̃g∆W̃
(z, z)B

∆W̃g∆W̃g
(z, z)B−1

∆W̃g∆W̃
(z, z) ,
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Σ∆ξ∆ξ = E(∆ξit∆ξ
>
it ) is a (M − 1) × (M − 1) matrix and Σ∆v∆ξ = E(∆vit∆ξ

>
it ) is a vector of

dimension 1 × (M − 1). Moreover, for r = 1, · · · , d, Dmr(z) is the first order derivative vector of

the rth component of m(·), Hmr(z) its Hessian matrix, Df (z) the first order derivative vector of the

density function and

B
∆W̃g∆W̃g

(z, z) = E
[
∆W̃g,it∆W̃

>
g,it|Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z),

B
∆W̃g∆W̃

(z, z) = E
[
∆W̃g,it∆W̃

>
it |Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z).

Furthermore, diagd (tr(Hmr(z)H2)) and diagd(Df (z)H2Dmr(z)) stand for a diagonal matrix of ele-

ments of tr(Hmr(z)H2) and Df (z)H2Dmr(z), respectively, being ıd a d× 1 unitary vector.

The previous results exhibit some remarkable differences with respect to standard local constant

estimators (i.e., Nadaraya-Watson estimator). Meanwhile the asymptotic bias exhibits the same

expression as the corresponding for the Nadaraya-Watson, the order of the variance is different.

More precisely, the bias term depends mainly on the smoothness of m(·) but, as it could be expected,

it is also going to depend on the smoothness of g(·). However, by introducing a condition that relates

the bandwidth matrices, i.e. tr(H2) = op(tr(H1)), the dependence on g(·) becomes asymptotically

negligible.

With respect to the variance term, we point out two relevant issues. On one hand, the variance is

composed by three elements: the first one related to the variation of the measurement error of the

structural equation, the second one addresses for the variability of the estimated reduced form, and

the last one accounts for the covariance among the measurement error of all equations in the system.

On the other hand, and most important, the rate of convergence of the variance is suboptimal. In

this smoothness class the lower rate of convergence for this type of estimators is N |H2|1/2. For this

reason, in the next section we will propose a one-step backfitting algorithm that will make the rate

of convergence of our estimator optimal.

Focus now on the study of the asymptotic behavior of the marginal integration estimator α̂(z1;H3)

we need the following additional assumptions.

ASSUMPTION 4.10 Let fZ(u) be the marginal density of Z, that is twice continuously differ-

entiable. Furthermore, let q(·) be a positive weighting function defined on the compact support of

fZ(u). It holds that ∫
q(u)du = 1 ;

∫
α(u)q(u)du = 0.

ASSUMPTION 4.11 The bandwidth matrix H3 is symmetric and strictly definite positive. Also,

let h3 be each entry of the matrix H3, h3 → 0 and as N →∞, N |H3| → ∞, N |H3|/log(N)→∞.

As it was already explained in the previous section, Assumption 4.10 is a standard condition in

this literature to identify α(z) up to a multiplicative constant. Assumption 4.11 contains necessary
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conditions to show the point-wise consistency of this marginal integration estimator under uniform

convergence results. Thus, for the standard case where µ2(Ku) = µ2(Kv) we obtain the following

result,

LEMMA 4.1 Under Assumptions 4.1-4.5, 4.7 and 4.10-4.11, as N tends to infinity and T is fixed√
N |H3|1/2 (α̂(z;H3)− α(z))

d−−−→ N (B(z;H3), V (z;H3)) ,

where

B(z;H3) = µ2(K)

[
1

2
tr(Hα(z)H3)− 1

2

∫
tr(Hα(s)H3)qZi(t−1)

(s)ds

+Dα(z)H3Df (z)

∫
qZi(t−1)

(s)

fZit,Zi(t−1)
(z, s)

ds−
∫
Dα(s)H3Df (s)

qZi(t−1)
(s)

fZit,Zi(t−1)
(z, s)

ds

]
,

V (z;H3) = 2σ2
vR(Ku)R(Kv)

∫ q2
Zit,i(t−1)

(s)

fZit,Zi(t−1)
(z, s)

ds.

The proof of this result follows exactly the same lines as in Qian and Wang (2012) and we omit

it to avoid redundances. Nevertheless, as it is noted also in Qian and Wang (2012) when Zit is

accurately predictable by Zi(t−1) the joint distribution function fZit,Zi(t−1)
(z1, z2) is close to zero

and it increases the asymptotic variance. Also, this estimator can be improved upon since the

structure of the covariance of the error term is ignored.

5 More efficient estimators

5.1 One-step backfitting and minimum distance estimators

In this section we first propose a one-step backfitting algorithm that will enable us to achieve

optimal nonparametric rates of convergence for the estimators of m(·). Note that the estimator

already proposed in Section 3 for m(·) was suboptimal (see Theorem 4.1). It turns out that, as it

will be detailed further in the section, the backfitting procedure generates two alternative estimators

for m(·). That is why, further in this section, we propose a minimum distance estimator to obtain

an unique more efficient solution.

Starting with the one-step backfitting technique let us define ∆Ỹ1it as

∆Ỹ1it = ∆Yit − α(Zit) + α(Zi(t−1)) + W̃>i(t−1)m(Zi(t−1)), i = 1, · · · , N ; t = 2, · · · , T, (5.1)

and substituting the structural equation of (3.3) into (5.1) we obtain

∆Ỹ1it = W̃>itm(Zit) + ∆vit, i = 1, · · · , N ; t = 2, · · · , T. (5.2)

However, despite (5.2) exhibits a low dimensional problem where m(·) could be estimated using

kernel weights that are related only to Zit; the quantities m(Zi(t−1)), α(Zit) and α(Zi(t−1)) are not
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observed. Thus, any standard nonparametric procedure generates unfeasible estimators. To over-

come this situation, we propose to replace in (5.1) these unknown functions by their corresponding

estimators in (3.5) and (3.10), i.e., m̂ĝ(z;H2), α̂(z1;H3) and α̂(z2;H3).

Let ∆Ŷ1it = ∆Yit − α̂(Zit;H3) + α̂(Zi(t−1);H3) + W̃>i(t−1)m̂ĝ(Zi(t−1), H2). The regression problem

turns out to be

∆Ŷ1it = W̃>itm(Zit) + ∆v̂1it, (5.3)

where the composite error term is of the form

∆v̂1it = ∆vit + W̃>i(t−1)

(
m̂ĝ(Zi(t−1);H2)−m(Zi(t−1))

)
− (α̂(Zit;H3)− α(Zit)) +

(
α̂(Zi(t−1);H3)− α(Zi(t−1))

)
.

Thus, the quantities of interest can be obtained by minimizing the following criterion function

N∑
i=1

T∑
t=2

(
∆Ŷ1it − W̃>it γ1

)2
KH4(Zit − z), (5.4)

where H4 is the bandwidth matrix at this stage. We denote by γ̂1 the minimizer of (5.4).

However, the resulting estimator of (5.4) is also biased due to the endogeneity problem and, in order

to solve it, we resort again to the IV method. Let W̃ĝ,it = (ĝ>it,i(t−1) U>it ) be a d× 1 vector of IV,

the one-step IV backfitting estimator, m̂
(1)
ĝ (z;H4), of m(·) has the following closed form

m̂
(1)
ĝ (z;H4) =

(
N∑
i=1

T∑
t=2

KH4(Zit − z)W̃ĝ,itW̃
>
it

)−1 N∑
i=1

T∑
t=2

KH4(Zit − z)W̃ĝ,it∆Ŷ1it. (5.5)

Before analyzing the main statistical properties of this estimator note that this backfitting procedure

provides two different estimators for the same function m(·). The second estimator will be obtained

by defining ∆Ŷ2it = ∆Yit − α̂(Zit;H3) + α̂(Zi(t−1);H3) − W̃>it m̂ĝ(Zit;H2). Then, if and substitute

(3.3) into ∆Ŷ2it the regression becomes

−∆Ŷ2it = W̃>i(t−1)m(Zi(t−1)) + ∆v̂2it, (5.6)

where the composite error term is

∆v̂2it = W̃>it
(
m̂ĝ(Zit;H2)−m(Zit)

)
+ (α̂(Zit;H3)− α(Zit))−

(
α̂(Zi(t−1);H3)− α(Zi(t−1))

)
−∆vit.

Following the same procedure as before and letting W̃ĝ,i(t−1) =
(
ĝ>it,i(t−1) U>i(t−1)

)
a d × 1 vector

of IV, the corresponding one-step IV backfitting estimator is

m̂
(2)
ĝ (z;H4) = −

(
N∑
i=1

T∑
t=2

KH4(Zi(t−1) − z)W̃ĝ,i(t−1)W̃
>
i(t−1)

)−1 N∑
i=1

T∑
t=2

KH4(Zi(t−1) − z)W̃ĝ,i(t−1)∆Ŷ2it.

(5.7)
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Note that we have available two different estimators, m̂
(1)
ĝ (z;H4) and m̂

(2)
ĝ (z;H4), for m(z). A

natural idea to combine both in an efficient way would be to obtain such an estimator by minimizing

the following criterion function((
m̂

(1)
ĝ (z;H4)

m̂
(2)
ĝ (z;H4)

)
−

(
m(z)

m(z)

))>
W−1
m

((
m̂

(1)
ĝ (z;H4)

m̂
(2)
ĝ (z;H4)

)
−

(
m(z)

m(z)

))
. (5.8)

As a weighting matrix, Wm, we propose the variance-covariance matrix of(
(m̂

(1)
ĝ (z;H4)−m(z))> (m̂

(2)
ĝ (z;H4)−m(z))>

)>
,

i.e. Ωm. Let m̃ (z;H4) be the minimizer of (5.8). It is easy to verify that

m̃ (z;H4) =
(

Ω(1)
m11

+ 2Ω(1)
m21

+ Ω(1)
m22

)−1 ((
Ω(1)
m11

+ Ω(1)
m21

)
m̂

(1)
ĝ (z;H4) +

(
Ω(1)
m12

+ Ω(1)
m22

)
m̂

(2)
ĝ (z;H4)

)
, (5.9)

where the d× d matrix Ω
(1)
mij is the (i, j)-th component of the following block partitioned matrix

Ω−1
m =

(
Ω

(1)
m11 Ω

(1)
m12

Ω
(1)
m21 Ω

(1)
m22

)
.

We now proceed to analyze the asymptotic properties of both the backfitting and the minimum

distance estimator.

5.2 Asymptotic properties

In order to show that the resulting one-step backfitting estimator achieves optimal rates of con-

vergence i.e. 1/N |H4|1/2, we need Assumptions 4.1-4.3 and the smoothness and boundedness

conditions already established in Assumptions 4.4-4.7 and 4.10-4.11. Furthermore, since we use

the estimators obtained in Section 3, to cancel asymptotically the additive terms in (3.1), we need

to ensure that the bias rate of these estimators, i.e. m̂ĝ(z;H2) and α̂(z;H3), is uniform. For this,

following Masry (1996) we impose some additional assumptions about the bandwidth H4 and its

relationship with the bandwidths of the previous steps.

ASSUMPTION 5.1 The bandwidth matrix H4 is symmetric and strictly positive definite. Also,

each entry of the matrix tends to zero as N tends to infinity in such a way that N |H4| → ∞.

ASSUMPTION 5.2 The bandwidth matrices H2, H3 and H4 must fulfill that N |H2||H4|/log(N)→
∞ and N |H3||H4|/log(N)→∞, whereas tr(H2)/tr(H4)→ 0 and tr(H3)/tr(H4)→ 0 as N →∞.

Under these assumptions we get the following asymptotic distribution of m̂
(j)
ĝ (z;H4), for j = 1, 2.
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THEOREM 5.1 Assume conditions 4.1-4.8, 4.11 and 5.1-5.2 hold, then as N → ∞ and T is

fixed we obtain√
N |H4|1/2

(
m̂

(j)
ĝ (z;H4)−m(z)−B(z;H4)

)
d−−−→ N

(
0, V (j)(z;H4)

)
,

where for j = 1 we get

B(z;H4) = µ2(K)

(
diagd

(
Df (z)H4

√
N |H4|1/2Dmr

(z)

)
ıdfZit

(z)−1 +
1

2
diagd

(
tr

(
Hmr

(z)H4

√
N |H4|1/2

))
ıd

)
,

V (1)(z;H4) = 2R(Ku)
(
σ2
v +m1(z)>Σ∆ξ∆ξm1(z) + Σ∆v∆ξm1(z)

)
B−1

W̃gW̃
(z)B

W̃gW̃g
(z)B−1

W̃gW̃
(z),

whereas for j = 2

V (2)(z;H4) = 2R(Ku)
(
σ2
v +m1(z)>Σ∆ξ∆ξm1(z) + Σ∆v∆ξm1(z)

)
B−1

W̃g−1
W̃−1

(z)B
W̃g−1

W̃g−1
(z)B−1

W̃g−1
W̃−1

(z),

and

B
W̃gW̃

(z) = E
[
W̃g,itW̃

>
it |Zit = z

]
fZit(z), B

W̃gW̃g
(z) = E

[
W̃g,itW̃

>
g,it|Zit = z

]
fZit(z),

B
W̃g−1W̃−1

(z) = E
[
W̃g,i(t−1)W̃

>
i(t−1)|Zi(t−1) = z

]
fZi(t−1)

(z),

B
W̃g−1W̃g−1

(z) = E
[
W̃g,i(t−1)W̃

>
g,i(t−1)|Zi(t−1) = z

]
fZi(t−1)

(z).

The proof of this result is done in the Appendix.

We focus now on the asymptotic properties of the minimum distance estimator, m̃ (z;H4), getting

the following result,

THEOREM 5.2 Assume conditions 4.1-4.8 and 5.1-5.2 hold, then as N →∞ and T is fixed√
N |H4|1/2 (m̃ (z;H4)−m(z)−B(z;H4))

d−−−→ N
(

0,
(
V (1)(z;H4)−1 + V (2)(z;H4)−1

)−1
)
.

The proof of this result is relegated to the Appendix.

Finally, focusing on Theorem 5.2 it can be highlighted that the asymptotic biases of the minimum

distance estimators are similar as the previous estimators. Nevertheless, the asymptotic variance is

the sum of the variance of the combined estimators and both exhibit the optimal rate of convergence

of this type of problems. Therefore, it is proved that this technique enables to obtain more efficient

estimators for m(·) and, at the same time, to achieve optimality.

6 Empirical results and Monte Carlo simulations

In order to determine the varying effects of unexpected health-care expenditures and households risk

aversion on their savings over the life cycle, in this section we first focus on the optimal consumption
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decision problem of the Spanish households. Later, we corroborate the results obtained via a Monte

Carlo experiment.

Although the theory of precautionary savings states that uncertainty has a negative impact on

household consumption and a positive effect on their savings, several empirical studies attempted

to establish this relationship but without achieving conclusive results; see Carroll and Samwick

(1997). Nevertheless, because the optimal consumption choice depends on life-time resources, the

expected rate of income growth and household’s health-care spending, there is some consensus in

considering that household’s consumption/saving decisions vary systematically with the age of the

household.

In this context and with the aim of showing the feasibility and possible gains of the method proposed

in the previous sections, in the following we consider a simulated example and analyze a stochastic

dynamic model of precautionary saving based on the LCH model of Modigliani and Brumberg

(1954). Then, using a random sample of Spanish households, we are able to establish to what

extend the precautionary behavior of the households affects to their consumption/saving decisions,

without imposing restrictive assumptions on either the functional forms or the unobserved individual

heterogeneity, something that to our knowledge is completely new.

6.1 Data

The data used in this analysis are obtained from the ECPF elaborated by the INE for the period

1985(I)-1996(IV) where each household is interviewed for eight consecutive quarters. Traditionally,

the household precautionary behavior to unexpected changes in income has been measured via

spending changes in non-durable goods. However, some authors, as in Aaronson et al. (2012), have

shown that spending in durable goods are more sensitive to these shocks than spending in non-

durable goods. Therefore, in order to determine the household behavior to this type of adversity is

often convenient to work with two different savings variables; see Attanasio et al. (1999) or Chou

et al. (2004). Specifically, the first saving variable excludes consumption in durable goods from the

calculation; i.e., furniture and household equipment and paid or imputed rent of the house, whereas

the second one takes into account such expenses. Thus, each definition is the result of reducing

households disposable income by the corresponding expenditure variable.

The number of observations initially available in the ECPF is 148, 679, but in order to work with a

balanced panel as complete as possible we only consider those households which answer to the eight

quarters and provide full information about their incomes and expenses. For sample size reasons

and to avoid having to specify an inheritance function, households whose head is aged under 26 or

over 65 years old are excluded.

As the reader can see in Table 1, in this sample there is a large proportion of households with

negative savings; i.e., 60.36% of the entire sample. Then, we must be specially careful when we

define the saving variables. In Chou et al. (2004) is proposed to follow the usual choice of taking
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S = ln(I −C) as dependent variable, where I is the income and C the consumption. However, this

expression excludes those households with negative savings and the omission of a such considerable

proportion of the random sample causes a serious sample selection problem that can invalidate our

conclusions. To overcome it and following Deaton and Paxson (1994) we use an approximate saving

rate as dependent variable; i.e. S = ln(I) − ln(C). In this way, this technique enables us to take

into account the information of the entire sample, including those households with negative savings.

Table 1. Distribution of households with negative savings by population groups.

Population Total Negative %

Group Obs Obs total

Total 30,000 18,107 60.36%

26-35 age 5,314 3,153 10.51%

36-45 age 7,494 4,787 15.96%

46-55 age 7,764 4,744 15.81%

56-65 age 9,428 5,423 18,08%

Note: This saving variable is defined as the difference between total household disposable income and

total expenditures. % total is the proportion of observations with negative saving in the entire sample.

Obs = observations.

Since data are large enough, we focus our attention to a sample restricted to married couples with one

or two children that own a unique property. In addition, to remove income and expenditure outliers

we eliminate the 2.5% in the upper and lower tail of the income distribution of the households of

the sample, whereas for the expenses in non-durable the 1% of the upper and lower tail is removed.

Thus, we work with a final sample of 1, 856 observations; i.e., 232 families. The distribution of

household disposable income and households expenditures of the sample is collected in Table 2.

Analyzing the figures in Table 2 we can note that, in average, total expenditures are higher in the

younger group and as the household age increases they become smaller. On its part, the figures

about total disposable income do not exhibit a clear trend and it might be necessary to consider

other features of the household in order to obtain a better understanding of its evolution by groups of

age. More precisely, we propose to use educational level of the household as a feature to explain total

disposable income. In Table 3, we collect the distribution of household income and expenditures by

educational level.

Looking at the figures in Table 3 we can state that, as expected, both the revenue and expenditure

from the group with a high level of education are larger. Therefore, in the next subsection we

first estimate the model specified previously without considering the educational level. Next, we

reestimate the model considering different education levels so we can analyze the heterogeneity

between these population groups.
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Table 2. Distribution of the household disposable income and household expenditures by age-group.

Total household disposable income Total household disposable income

26-35 36-45 46-55 56-65 26-35 36-45 46-55 56-65

Mean 1,165,321 4,781.7 1,133,457 1,070,904 1,687,246 1,653,106 1,623,759 1,606,457

Std 468,277.1 2,530.2 448,960.6 517,507.8 842,219.2 839,472.8 714,451.7 825,215.2

Obs 586 503 353 414 586 503 353 414

Notes: Both revenues and expenses are measured in constant 1985 pesetas. Std = Standard deviation.

Table 3. Distribution of household disposable income and expenditures by educational level.

Total household disposable income Total household disposable income

Low education High education Low education High education

Mean 1,078,119 1,188,709 1,622,239 1,663,152

Std 481,438.6 471,254.8 784,840.8 832,175.1

Obs 1,128 592 1,128 592

Note: As household with high education we consider those with al least a high-school diploma, whereas

household with low educational level are those whose head is illiterate, have no education or first degree

studies.

6.2 Empirical results

The system of equations that we estimate is

Yit = α(Zit) +Witm1(Zit) + Uitm2(Zit) + µi + vit,

Wit = g(Xit) + ζi + ξit,
i = 1, · · · , N ; t = 1, · · · , T, (6.1)

where i index the household, t the time, Zit is the age of the household head, Wit the health-care

expenditures (log), Yit the savings, Uit the permanent income (log), Xit a vector that contains the

age of the householdhead of the i-th household and Zit the number of children under 14 years old.

Note that household permanent income is not directly observable. In order to approximate this

variable we follow the proposal in Chou et al. (2004). Thus, assuming that the interest rate equals

to the productivity rate of growth and 65 years old is the maximum age at which people works, the

permanent earnings at age τ0 can be calculated as

Y (τ0) = X>β + (65− τ0 + 1)−1
65∑
τ=τ0

f(τ),

where f(τ) is the estimated quadratic function of age, Yit the household income and Xit a vector

of demographic characteristics.

As we state in previous sections, bandwidth selection is an important issue. There are many standard

procedures in the literature for optimal bandwidth selection but for methodological simplicity the
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bandwidth H4 is chosen according to Silverman’s rule-of-thumb; i.e., Ĥ4 = ĥ4I = σ̂zn
−1/5, where

σ̂z is the sample standard deviation of Z. Also, remember that in order to obtain the desirable

properties of the proposed estimators it is necessary that the biases of ĝit,i(t−1), m̂ĝ(z;H2) and

α̂(z1;H3) are not too large. Therefore, H1, H2 and H3 must be chosen as smallest as possible or, at

least, smaller than H4.

Estimation results are shown in Figures 1-3. The estimated curves are plotted against the age

variable jointly with 95% pointwise confidence intervals calculated adapting the wild bootstrap

technique of Härdle et al. (2004) to this context. Figure 1 shows the results for the sample without

considering educational levels. On the other side, in Figures 2 and 3 we show the estimation results

distinguishing between those who have lower educational level (Figure 2) and those who have higher

education level (Figure 3).

Figures 1-3 have the same structure. They are divided into three panels, A, B and C. Panels A

show the precautionary savings elasticity to changes in households risk aversion; i.e., α̃(·). Panels

B exhibit the corresponding elasticity to changes in health-care expenditures, i.e., m̃1(·), whereas

Panels C show the precautionary savings elasticity to changes in household income; i.e., m̃2(·). In

addition, Panel A-1 shows the estimated curves when durable goods are not taken into account.

Panel A-2 focuses on the second definition of savings, whereas Panel A-3 compares the estimated

curves when endogeneity is not considered. This structure is maintained for Panels B and C.

Focusing on the results in Figure 1, we can note that when we control for household risk aversion

(Panels A) the saving rate is hump shaped. Younger households (26-37) behave as bugger-stock

agents, when savings exhibit a downward path. Meanwhile, when we control for income uncertainty

(Panels C) savings decrease from age 26 to age 34, when savings increase significantly corroborating

thus the results in Gourinchas and Parker (2002) and Cagetti (2003). When we control for uncer-

tainty about health-care expenditures (Panels B) we see that younger households (26-33) exhibit

a declining savings rate, following by a constant path till the age of 40, where the hump-shaped

appears again.

If we combine these results with the delay in the wealth accumulation process of the Spanish

households (note that in the U.S. it begins around 40 age whereas in Spain at 45 age), we realize

the negative impact that public health programs have on precautionary savings, confirming the

results in Chou et al. (2004). Finally, comparing the behavior of the elasticities for the different

savings results, we can note that consumption of durable goods react more to unexpected changes

in income, whereas consumptions on non-durable goods is more sensitive to both household risk

aversion and potential health-care payout. This holds specially for households over 45 years old.

Finally, in order to evaluate the empirical relevance of the endogeneity problem we compare the

results of our technique (lines grey and black) against those obtained without considering endo-

geneity (lines grey and black); see Panels 3 of Figure 1. By looking at these results, there are some

significant differences: when we control for uncertainty about health-care expenditures households

accumulate assets in the middle of their life, whereas when endogeneity is not taken into account
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there is a more or less constant path over the life cycle.

Figure 1. Household savings over the life-cycle

Notes: Thick line denotes the estimates for durable savings, continuous line for non-durable savings while dotted line

is the 95% pointwise confidence interval.

Now, we turn to analyze the impact of the different types of uncertainty on the household precau-

tionary behavior when facing different educational levels (high or low). Controlling for household

risk aversion we find out that the saving rate is different according to educational level. As we can
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Figure 2. Household savings over the life-cycle by education level: low education

Notes: Thick line denotes the estimates for durable savings, continuous line for non-durable savings while dotted line

is the 95% pointwise confidence interval.
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Figure 3. Household savings over the life-cycle: high education

Notes: Thick line denotes the estimates for durable savings, continuous line for non-durable savings while dotted line

is the 95% pointwise confidence interval.
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see in Figures 2 and 3, higher educational agents are risk averse tending to save during the early

stages of work (26-42). Afterwards, they increase their consumption. On the contrary, households

with less education show a smaller degree of risk aversion. They exhibit an inverted hump-shaped

from age 29 to age 45 followed by a rather steady savings path along time. This result extends the

findings that appear in Cagetti (2003), where it is pointed out that households with less education

exhibit a lower degree of risk aversion.

Focusing on the precautionary savings elasticity to changes in unexpected health-care expenses we

obtain that households with a higher educational level show a more cautious behavior regarding to

unforseen health-care expenditures. Finally, analyzing this elasticity to unexpected income changes

we appreciate a completely different behavior between these populations. Households with low ed-

ucation exhibit the hump-shaped established by the LCH model during the early stages of work

(30-46), maintaining a constant saving rate in adulthood, whereas household with a higher educa-

tional level have a declining savings rate until age 47 when savings rate increase exponentially due

to retirement or legacy reasons.

In summary, these results confirm what is obtained in other papers of this literature. All these

results indicate that an extension of the standard life cycle model that takes into account households

preventive motif linked to uncertainty of both labor market and life expectancy is very attractive. In

addition, combining the particularities of this model jointly with the estimation strategy proposed

in this paper enables us to determine household’s consumption/savings decisions without having to

resort to further strong assumptions about functional forms or densities.

6.3 Monte Carlo experiment

To investigate the small sample properties of our estimator, m̃(·), we perform a Monte Carlo simu-

lation. As a measure of accuracy we propose the following averaged mean squared error (AMSE)

AMSE (m̃(z)) =
1

L

L∑
`=1

1

N(T − 1)

N∑
i=1

T∑
t=2

(
d∑
r=1

(m̃`r(z)−m`r(z))

)2

,

where ` is the `-th replication and L the number of replications.

Observations are generated from the following semi-parametric panel data regression system:

Yit = α(Zit) +Witm1(Zit) + Uitm2(Zit) + µi + vit, i = 1, · · · , N ; t = 1, · · · , T,

where Wit is an endogenous variable constructed as Wit = g(Xit) + ζi + ξit. Also, Zit, Uit and Xit

are random variables generated such that Zit = ωit + ωi(t−1) (ωit is an i.i.d. uniform distributed

(0,π/2) random variable), Uit = 0.25Ui(t−1) + ψ1it, and Xit = 0.5Xi(t−1) + ψ2it (ψ1it and ψ2it are

i.i.d. N (0, 1)). Error distributions of vit and ξit are generated as

vit = 0.65vi(t−1) + ϑit and ξit = εit + ρvit,
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where εit = 0.5εi(t−1)+ϑ
∗
it (ϑit and ϑ∗it are i.i.d.N (0, 1) random variables). Clearly, vit is independent

of Zit and Uit so that E(vit|Z,U) = 0 and E(vit) = 0. However, E(vit|W) 6= 0 because vit and ξit

are correlated through the parameter ρ = 0.5, that is responsible for this correlation.

In addition, to allow the presence of cross-sectional heterogeneity in the form of fixed effects the

individual effects are assumed to be correlated with the nonparametric covariates. Specifically, the

dependence between these terms is imposed by generating µi = 0.5Zi· + ui and ζi = 0.5Xi· + ui,

where ui is an i.i.d. N (0, 1) random variable, whereas, for i = 2, · · · , N , Zi· = T−1
∑T

t=1 Zit and

Xi· = T−1
∑T

t=1Xit.

To verify the asymptotic theory of previous sections, the number of period T is fixed at 3, while

the number of cross-sections N is varied between 50, 75 and 100. We use 1000 Monte Carlo

replications L and a Gaussian kernel. Following the necessary assumptions to obtain nonparametric

estimators with a suitable asymptotic behavior, we propose to obtain the bandwidth matrix of H4

by the Silverman’s rule-of-thumb, whereas H1, H2, H3 are chosen to be under-smoothing. Thus,

Ĥ4 = ĥI = σ̂z(NT )−1/5, where σ̂x and σ̂z are the sample standard deviation of Xit and Zit,

respectively. The estimated bias, standard deviation (Std), and AMSE of the estimators suggested

above are reported in Table 4.

Table 4. Simulation results for empirical sizes.

T N Result m̃(z) α̃(z)

3 50 Bias 0.032 -0.808

Std 0.043 0.048

AMSE 0.044 0.701

3 75 Bias 0.053 -0.814

Std 0.033 0.036

AMSE 0.036 0.698

3 100 Bias 0.047 -0.814

Std 0.024 0.028

AMSE 0.026 0.691

As we can see in Table 4, both minimum distance estimators, m̃(z) and α̃(z), perform quite well.

For all T , as N increases, the AMSEs of both estimators are lower, as we expected from their

asymptotic properties described in the previous section. Furthermore, the biases are more or less

steady for the different empirical sizes studied but the standard deviations are not. For m̃(z) the

standard deviation is reduced from 0.043 when N = 50 to 0.024 when N = 100, whereas for α̃(z) it

passes from 0.048 to 0.028. Therefore, based on these results we can conclude that the consistency

of the previous empirical results is proved.
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7 Conclusion

This paper considers the estimation of a flexible structural model of optimal life-cycle savings,

controlling both uncertainty about health-care expenditures and household risk aversion. To avoid

misleading inferences, a locally constant IV estimator can be proposed. However, since a bivariate

kernel weight is necessary to avoid the non-negligible asymptotic bias, the variance is enlarged. In

order to achieve the optimal rate of convergence of this type of problems, a new one-step backfitting

algorithm is proposed based on first differencing techniques that are combined through minimum

distance estimation approach. The resulting estimators are shown to be oracle efficient and they

exhibit the optimal rate of convergence for this smoothness problem. Compared to the estimation

procedures already proposed in the literature, this new technique provides nonparametric estimators

that enable us to deal simultaneously with several estimation problems (i) unobserved cross-sectional

heterogeneity arbitrarily correlated with the covariates in an unknown way, (ii) varying parameters

of unknown form in the Euler equation and (iii) endogenous explanatory variables. To illustrate

the feasibility and possible gains of this method, we present an application about household’s

precautionary savings over the life-cycle. From this empirical application, we obtain that households

accumulated wealth at least in two periods of life. In younger stages, to guard against uncertainty

about unforeseen income downturns and when they become older due to other reasons related

to retirement and bequests. Also it is shown the negative impact of public health programs on

precautionary savings. The paper concludes with a Monte Carlo simulation.

8 Appendix

Proof of Theorem 4.1

Remember that throughout the paper we denoted the following d× 1 vectors,

∆W̃it =
(

∆W>it ∆U>it

)>
, ∆W̃g,it =

(
g>it,i(t−1) ∆U>it

)>
, ∆W̃ĝ,it =

(
ĝ>it,i(t−1) ∆U>it

)>
W̃it =

(
W>it U>it

)>
, W̃i(t−1) =

(
W>i(t−1) U>i(t−1)

)>
.

In order to obtain the desired results of Theorem 4.1 we define

m̂g(z;H2) =

(
T∑
i=1

T∑
t=2

KitKi(t−1)∆W̃g,it∆W̃
>
it

)−1 N∑
i=1

T∑
t=2

KitKi(t−1)∆W̃g,it∆Yit,

where

Kit =
1

|H2|1/2
K
(
H
−1/2
2 (Zit − z)

)
; Ki(t−1) =

1

|H2|1/2
K
(
H
−1/2
2 (Zi(t−1) − z)

)
.

Clearly, the two-step weighted locally constant least-squares estimator (3.5) can be written as

m̂ĝ(z;H2) =
(
m̂ĝ(z;H2)− m̂g(z;H2)

)
+ m̂g(z;H2). (A.1)
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According to (A.1), to prove the Theorem 4.1 all that we need to show is that, under the conditions

established in the Theorem 4.1, we get that as N tends to infinity and T is fixed,√
N |H2|

(
m̂ĝ(z;H2)− m̂g(z;H2)

)
= op(1), uniformly in z√

N |H2| (m̂g(z;H2)−m(z)−B(z;H2))
d−−−→ N (0, V (z,H2)) ,

where

B(z;H2) = µ2(K)

(
diagd

(
Df (z)H2

√
N |H2|Dmr

(z)
)
ıdf
−1
Zit,Zi(t−1)

(z, z) +
1

2
diagd

(
tr
(
Hmr

(z)H2

√
N |H2|

))
ıd

)
and

V (z;H2) = 2R(Ku)R(Kv)
(
σ2
v +m1(z)>Σ∆ξ∆ξm1(z) + Σ∆v∆ξm1(z)

)
B−1

∆W̃g∆W̃
(z, z)B

∆W̃∆W̃
(z, z)B−1

∆W̃g∆W̃
(z, z).

These results are proved in Lemmas 8.1 and 8.2.

LEMMA 8.1 Under conditions of Theorem 4.1, as N →∞ and T is fixed,√
N |H2|

(
m̂ĝ(z;H2)− m̂g(z;H2)

)
= op (1) uniformly in z.

Proof of Lemma 8.1.

Throughout this appendix we use the following notation

Ŝn = (NT )−1
∑

itKitKi(t−1)∆W̃ĝ,it∆W̃
>
it ; T̂n = (NT )−1

∑
itKitKi(t−1)∆W̃ĝ,it∆Yit.

Let us write the first element of (A.1) as

m̂ĝ(z;H2)− m̂g(z;H2) = Ŝ−1
n T̂n − S−1

n Tn, (A.2)

where n = NT and Sn and Tn are the corresponding expressions of Ŝn and T̂n, respectively, with

g(Zit, Zi(t−1)) instead of ĝit,i(t−1). At this situation, we first show that as N tends to infinity,

Ŝ−1
n = B−1

∆W̃g∆W̃
(z, z) + op(‖H1/2

2 ‖), (A.3)

where

B
∆W̃g∆W̃

(z, z) = E
[
∆W̃g,it∆W̃

>
it |Zit = z, Zi(t−1) = z

]
fZit,Zi(t−1)

(z, z).

For this, let us denote

Ŝn = Sn + II1n, (A.4)

where as

Sn = (NT )−1
∑
it

KitKi(t−1)∆W̃g,it∆W̃
>
it ,

II1n = (NT )−1
∑
it

KitKi(t−1)

(
∆W̃ĝ,it −∆W̃g,it

)
∆W̃>it ,
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so we have to analyze each term separately to prove (A.3). To this end, we follow the usual Taylor

expansion; i.e.,

f(z +H
1/2
2 v) = f(z) +D>f (z)H

1/2
2 v + op(‖H1/2

2 ‖), as ‖H2‖ → 0.

Then, given that Zit and vit are i.i.d. across i and because the stationary assumption, when N

tends to infinity and by the law of iterated expectations it implies

E (Sn) =

∫ ∫
E
[
∆W̃g,it∆W̃

>
it |Zit = z +H

1/2
2 u, Zi(t−1) = z +H

1/2
2 v

]
× fZit,Zi(t−1)

(
Zit = z +H

1/2
2 u, Zi(t−1) = z +H

1/2
2 v

)
K(u)K(v)dudv.

Under Assumption 4.1,

V ar(Sn) = V ar
(
KitKi(t−1)∆W̃g,it∆W̃

>
it

)
+

1

T

T∑
t=3

(T − t)Cov
(
Ki2Ki1∆W̃g,i2∆W̃>i2 ,KitKi(t−1)∆W̃g,it∆W̃

>
it

)
,

where, under conditions 4.7-4.8, it holds

V ar
(
KitKi(t−1)∆W̃g,it∆W̃

>
it

)
= Op

(
1

N |H2|

)
and

Cov
(
Ki2Ki1∆W̃g,i2∆W̃>i2 ,KitKi(t−1)∆W̃g,it∆W̃

>
it

)
= Op

(
1

N |H2|

)
.

If N |H2| tends to infinity, this variance term tends to zero and it is proved

Sn = B
∆W̃g∆W̃

(z, z)(1 + op(1)). (A.5)

Now, focus on the behavior of II1n, by Assumptions 4.2 and 4.5-4.8 we obtain

II1n =

 (NT )−1
∑

itKitKi(t−1)

(
ĝit,i(t−1) − git,i(t−1)

)
∆W̃>it

(NT )−1
∑

itKitKi(t−1) (∆Uit −∆Uit) ∆W̃>it

 = op(1) (A.6)

given that, using the uniform convergence results as the ones established in Theorem 6 of Masry

(1996),

(NT )−1
∑
it

KitKi(t−1)

(
ĝit,i(t−1) − git,i(t−1)

)
∆W̃>it

≤ (NT )−1
∑
it

sup
{Xit,Xi(t−1)}

|ĝit,i(t−1) − git,i(t−1)||KitKi(t−1)∆W̃it|>

= op(1), (A.7)

since it is straightforward to show (NT )−1
∑

it |KitKi(t−1)∆W̃it| = Op(1).
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By (A.4) we know Ŝn = Sn + II1n and following the rule of the inverse matrix and the Taylor’s

theorem we get

Ŝ−1
n = S−1

n + S−1
n II1nS

−1
n + op(‖H1/2

2 ‖).

Replacing these previous results here we get

Ŝ−1
n = B−1

∆W̃g∆W̃
(z, z) + op(‖H1/2

2 ‖) (A.8)

so the result (A.3) is proved.

On the other hand, replacing (A.3) and (A.5) in (A.2) and by the Cramer-Wold device we get

m̂ĝ(z;H2)− m̂g(z;H2) = B−1

∆W̃g∆W̃
(z, z)(T̂n − Tn) + op(1). (A.9)

Focus now on the behavior of T̂n − Tn we claim that following the same procedure as in (A.6) we

get

T̂n − Tn = (NT )−1
∑
it

KitKi(t−1)(∆W̃ĝ,it −∆W̃g,it)∆Yit = op(1). (A.10)

Using the uniform convergence of ĝit,i(t−1),

(NT )−1
∑
it

KitKi(t−1)

(
ĝit,i(t−1) − git,i(t−1)

)
∆Yit

≤ (NT )−1
∑
it

sup
{Xit,Xi(t−1)}

|ĝit,i(t−1) − git,i(t−1)||KitKi(t−1)∆Yit|

= op(1)

since it is straightforward to show that (NT )−1
∑

it |KitKi(t−1)∆Yit| = Op(1). Then, by (A.9) and

(A.10) we obtain that as N |H2| → ∞

m̂ĝ(z;H2)− m̂g(z;H2) = op

(
1√
N |H2|

)
,

so the Lemma 8.1 is proved.

In order to prove the asymptotic distribution of m̂ĝ(z;H2) we can write (A.1) as√
N |H2|

(
m̂ĝ(z;H2)−m(z)

)
=
√
N |H2|

(
m̂ĝ(z;H2)− m̂g (z;H2)

)
+
√
N |H2| (m̂g(z;H2)−m(z)) (A.11)

and need the following Lemma.

LEMMA 8.2 Under the conditions established in Theorem 4.1, as N →∞ and T is fixed,√
N |H2| (m̂g(z;H2)−m(z)−B(z,H2))

d−−−→ N (0, V (z,H2)) .
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Proof of Lemma 8.2.

The proof of this lemma is structured as follows. First, the asymptotic bias of the estimator is

analyzed. Later, we focus on the variance term and we conclude the proof with the asymptotic

normality of the estimator, once confirmed that the Lyapunov condition holds.

Since by the regularity conditions the Taylor’s remainder term is op (tr(H2)), if we replace ∆Wit by

(g(Xit, Xi(t−1)) + ∆ξit) in (3.3) the Taylor’s approximation of the smooth functions implies

∆Yit = ∆W̃>itm(z) + ∆Z>itDα(z) +
(
W̃it ⊗ (Zit − z)− W̃i(t−1) ⊗ (Zi(t−1) − z)

)>
Dm(z)

+
1

2

(
(Zit − z)>Hα(z)(Zit − z)− (Zi(t−1) − z)>Hα(z)(Zi(t−1) − z)

)
+

1

2

(
W̃>it ⊗ (Zit − z)>Hm(z)(Zit − z)− W̃>i(t−1) ⊗ (Zi(t−1) − z)>Hm(z)(Zi(t−1) − z)

)
+∆vit + ∆ξ>itm1(z) + op(1), (A.12)

let Dm(z) be a (d − 1)q × 1 vector and Dα(z) a q × 1 vector, for Dm(z) = vec(∂m(z)/∂z>) and

Dα(z) = vec(∂α(z)/∂z>) being the corresponding first-order derivatives vector of m(·) and α(·),
respectively. Also, Hm(z) is a (d − 1)q × q matrix and Hα(z) is a q × q matrix, for Hm(z) =

∂2m(z)/∂zz> and Hα = ∂2α(z)/∂z∂z> being the corresponding Hessian matrix of m(·) and α(·),
respectively. Also, for the sake of simplicity we denote

W̃>it ⊗ (Zit − z)>Dm(z) =
(
W>it ⊗ (Zit − z)>Dm1

(z), U>it ⊗ (Zit − z)>Dm2
(z)
)
,

W̃>it ⊗ (Zit − z)>Hm(z) (Zit − z) =
(
W>it ⊗ (Zit − z)>Hm1

(z) (Zit − z) , U>it ⊗ (Zit − z)>Hm2
(z) (Zit − z)

)
and similarly for (W̃i(t−1) ⊗ (Zi(t−1) − z))>Dm(z) and (W̃i(t−1) ⊗ (Zi(t−1) − z))>Hm(z)(Zi(t−1) − z).

Combining (A.12) with the second element of (A.11) we can write m̂g(z;H2) as

m̂g(z;H2)−m(z) =(
N∑
i=1

T∑
t=2

KitKi(t−1)∆W̃g,it∆W̃
>
it

)−1 N∑
i=1

T∑
t=2

KitKi(t−1)∆W̃g,it

(
Git + ∆vit +m1(z)>∆ξit

)
, (A.13)

where

Git = ∆Z>itDα(z) +
(
W̃it ⊗ (Zit − z)− W̃i(t−1) ⊗ (Zi(t−1) − z)

)>
Dm(z)

+
1

2

(
(Zit − z)>Hα(z)(Zit − z)− (Zi(t−1) − z)>Hα(z)(Zi(t−1) − z)

)
+

1

2

(
W̃>it ⊗ (Zit − z)>Hm(z)(Zit − z)− W̃>i(t−1) ⊗ (Zi(t−1) − z)>Hm(z)(Zi(t−1) − z)

)
−m1(z)>∆ξit.

For the sake of simplicity, let us denote

m̂g(z;H2)−m(z) = S−1
n (Bn + Un +Rn) , (A.14)
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where

Bn = (NT )−1
∑
it

KitKi(t−1)∆W̃g,itGit,

Un = (NT )−1
∑
it

KitKi(t−1)∆W̃g,it∆vit,

Rn = (NT )−1
∑
it

KitKi(t−1)∆W̃g,itm1(z)>∆ξit.

Thus, to complete the proof of Theorem 4.1 it is enough to show√
N |H2| (m̂g(z;H2)−m(z))−

√
N |H2|S−1

n Bn =
√
N |H2|S−1

n (Un +Rn) , (A.15)

where we will demonstrate that S−1
n Bn contributes to the asymptotic bias, whereas the two terms

of the right-hand side of (A.14) are asymptotically normal.

Focus first on the asymptotic behavior of the bias term, we can decompose Bn into five different

terms that we have to analyze separately. Specifically, Bn can be rewritten as

Bn = (NT )−1
∑
it

KitKi(t−1)∆W̃g,itGit =
(
B(1)
n +B(2)

n +B(3)
n +B(4)

n −B(5)
n

)
, (A.16)

where

B(1)
n = (NT )−1

∑
it

KitKi(t−1)∆W̃g,it∆Z
>
itDα(z),

B(2)
n = (NT )−1

∑
it

KitKi(t−1)∆W̃g,it

(
W̃it ⊗ (Zit − z)− W̃i(t−1) ⊗

(
Zi(t−1) − z

))>
Dm(z),

B(3)
n = (2NT )−1

∑
it

KitKi(t−1)∆W̃g,it

(
(Zit − z)>Hα(z) (Zit − z)−

(
Zi(t−1) − z

)>Hα(z)
(
Zi(t−1) − z

))
,

B(4)
n = (2NT )−1

∑
it

KitKi(t−1)∆W̃g,it

(
W̃>it ⊗ (Zit − z)>Hm(z) (Zit − z)− W̃>i(t−1) ⊗

(
Zi(t−1) − z

)>
× Hm(z)

(
Zi(t−1) − z

))
,

B(5)
n = (NT )−1

∑
it

KitKi(t−1)∆W̃g,itm1(z)>∆ξit.

For the standard case µ2(Ku) = µ2(Kv) we get that by the law of iterated expectations and the

stationarity condition,

E(B(1)
n ) = E

[
KitKi(t−1)∆W̃g,it∆Z

>
itDα(z)

]
=

∫
KitKi(t−1)E(∆W̃g,it|Zit, Zi(t−1))∆Z

>
itDα(z)f(Zit, Zi(t−1))dZitdZi(t−1)

= E(∆W̃g,it|Zit = z, Zi(t−1) = z) (µ2(Ku)− µ2(Kv))Df (z)H2Dα(z)

= op(1). (A.17)
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Similarly, by iterated expectations

E(B(2)
n ) = E

[
KitKi(t−1)

(
E(∆W̃g,itW̃

>
it |Zit, Zi(t−1))⊗ (Zit − z)>

− E(∆W̃g,itW̃
>
i(t−1)|Zit, Zi(t−1))⊗

(
Zi(t−1) − z

)>)
Dm(z)

]
=

∫ (
E(∆W̃g,itW̃

>
it |Zit = z, Zi(t−1) = z)Df (z)(H

1/2
2 u)

)
⊗ (H

1/2
2 u)>Dm(z)K(u)K(v)dudv

−
∫ (

E(∆W̃g,itW̃
>
i(t−1)|Zit = z, Zi(t−1) = z)Df (z)(H

1/2
2 v)

)
⊗ (H

1/2
2 v)>Dm(z)K(u)K(v)dudv

= µ2(K)B
∆W̃g∆W̃

(z, z)diagd (Df (z)tr(H2)Dmr
(z)) ıdf

−1
Zit,Zi(t−1)

(z, z) + op(tr(H2)). (A.18)

On its part, following a similar procedure as in (A.17) it is straightforward to show

E(B(3)
n ) =

1

2
E
[
KitKi(t−1)E(∆W̃g,it|Zit, Zi(t−1))

(
(Zit − z)>Hα(z)(Zit − z)

− (Zi(t−1) − z)>Hα(z)(Zi(t−1) − z)
)]

=
1

2
E(∆W̃g,it|Zit = z, Zi(t−1) = z)(µ2(Ku)− µ2(Kv))tr(Hα(z)H2) + op(tr(H2)), (A.19)

where diagd(tr(Hα(z)H2)) stands for a diagonal matrix of element tr(Hα(z)H2) whereas following

the proof of (A.18) and (A.19),

E(B(4)
n ) =

1

2
E
[
KitKi(t−1)

(
E(∆W̃g,itW̃

>
it |Zit, Zi(t−1))⊗ (Zit − z)>Hm(z)(Zit − z)

− E(∆W̃g,itW̃
>
i(t−1)|Zit, Zi(t−1))⊗ (Zi(t−1) − z)>Hm(z)(Zit − z)

)]
=

1

2
B

∆W̃g∆W̃
(z, z)diagd(tr(Hmr(z)H2))ıdµ2(K) + op(tr(H2)). (A.20)

Also, it is straightforward to show that E(B
(5)
n ) = op(1) since we assume E(ξit|Zit, Zi(t−1)) = 0.

Furthermore, it is easy to prove that any component of the variance of Bn converges to zero following

a similar procedure as in the proof of Lemma 8.1 and assuming H2 → 0 and N |H2| → ∞. Then,

replacing (A.17)-(A.20) in Bn, using (A.7) and applying the Cramer-Wold device we get that the

bias term of this local constant IV regression estimator (3.5) is

S−1
n Bn = µ2(K)B

∆W̃g∆W̃
(z, z)−1B

∆W̃g∆W̃
(z, z)

[
diagd(Df (z)tr(H2)Dmr(z))ıdf

−1
Zit,Zi(t−1)

(z, z)

+
1

2
diagd(tr(Hmr(z)H2))ıd

]
+ op(tr(H2)), (A.21)

so the first part of the proof is done.

On the other hand, to obtain the asymptotic variance of the right part of (A.15) we have to analyze

the variance of Un and Rn as well as the covariance between both terms. For this, let us denote

∆v = (∆v1, · · · ,∆vN ) as the N(T − 1)× 1-vector for ∆vi = (∆vi2, · · · ,∆viT )>,

E(∆vi∆v
>
i |Xit, Xi(t−1), Zit, Zi(t−1), Uit, Ui(t−1)) =


2σ2

v , for i = i′, t = t′,

−σ2
v , for i = i′, |t− t′| < 2,

0, for i = i′, |t− t′| ≥ 2.

(A.22)
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When we analyze Un we claim that by the law of iterated expectations and Assumptions 4.1, 4.2

and 4.4-4.8

N |H2|V ar(Un) = |H2|(NT )−1
∑
ii′

∑
tt′

E
[
∆W̃g,itE(∆vit∆vi′t′ |Xit, Xi(t−1), Zit, Zi(t−1), Uit, Ui(t−1))

×∆W̃>g,i′t′KitKi(t−1)Ki′t′Ki′(t′−1)

]
= 2σ2

vR(Ku)R(Kv)B∆W̃g∆W̃g
(z, z)(1 + op(1)). (A.23)

To show this result note that the covariance between different individuals are clearly zero by the

independence condition. Therefore, for i = i′ we consider two different cases: t = t′ and t 6= t′. For

t = t′ and Assumptions 4.1, 4.2 and 4.4-4.8, by standard kernel methods we obtain

|H2|T−1
T∑
t=2

E
[
∆W̃g,itE(∆v2

it|Xit, Xi(t−1), Zit, Zi(t−1), Uit, Ui(t−1))∆W̃
>
g,itK

2
itK

2
i(t−1)

]
= 2σ2

v |H2|E
[
E(∆W̃g,it∆W̃

>
g,it|Zit, Zi(t−1))K

2
itK

2
i(t−1)

]
= 2σ2

vR(Ku)R(Kv)B∆W̃g∆W̃g
(z, z)(1 + op(1)).

Meanwhile, for t 6= t′, we proceed in the same way as in the previous equation so if we consider

again the stationary assumption, 4.1, we get

2|H2|T−1
T∑
t=3

(T − t)E
[
∆W̃g,i2E(∆vi2∆vit|Xit, Xi(t−1), Xi(t−2), Zit, Zi(t−1), Zi(t−2), Uit, Ui(t−1), Ui(t−2))

×∆W̃>g,itKi2Ki1KitKi(t−1)

]
= −σ2

v |H2|1/2R(Ku)E[∆W̃g,it∆W̃
>
g,it|Zi1 = z, Zi2 = z, Zi3 = z]fZi1,Zi2,Zi3(z, z, z)(1 + op(1)).

Note that only those terms of the variance-covariance matrix in which |t−t′| < 2 holds are nonzero.

The remaining terms of this matrix are zero by the structure of the error term in first differences

established in (A.22).

Second, we focus on the behavior of Rn and follow a similar procedure as in (A.23). Let Σ∆ξ∆ξ =

E(∆ξit∆ξ
>
it ) be,

N |H2|V ar(Rn) = |H2|(NT )−1
∑
ii′

∑
tt′

E
[
∆W̃g,itm1(z)>E(∆ξit∆ξ

>
it |Xit, Xi(t−1), Zit, Zi(t−1), Uit, Ui(t−1))

×m1(z)∆W̃>g,i′t′KitKi(t−1)Ki′t′Ki′(t′−1)

]
= 2R(Ku)R(Kv)B∆W̃g∆W̃g

(z, z)m1(z)>Σ∆ξ∆ξm1(z)(1 + op(1)). (A.24)

Similarly, let Σ∆v∆ξ = E(∆vit∆ξ
>
it ) be we get

N |H2|Cov(Un, Rn) = |H2|(NT )−1
∑
ii′

∑
tt′

E
[
∆W̃g,itE(∆vit∆ξ

>
it |Xit, Xi(t−1), Zit, Zi(t−1), Uit, Ui(t−1))

×m1(z)∆W̃g,i′t′KitKi(t−1)Ki′t′Ki′(t′−1)

]
= R(Ku)R(Kv)B∆W̃g∆W̃g

(z, z)Σ∆v∆ξm1(z)(1 + op(1)). (A.25)
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Then, applying the Cramer-Wold device and using (A.7) and (A.23)-(A.25), as N |H2| → ∞,

N |H2|V ar
(
S−1
n (Un +Rn)

)
= 2R(Ku)R(Kv)

(
σ2
v +m1(z)>Σ∆ξ∆ξm1(z) + Σ∆v∆ξm1(z)

)
×B−1

∆W̃g∆W̃
(z, z)B

∆W̃g∆W̃g
(z, z)B−1

∆W̃g∆W̃
(z, z)(1 + op(1)) (A.26)

Since we believe that the conditions established on H1 and H2 are enough to show that the other

terms are op(1), to complete the proof of Theorem 4.1 is necessary to show that as N →∞,√
N |H2| (m̂g(z;H2)−m(z))

d−−−→ N
(
0, 2R(Ku)R(Kv)

(
σ2
v +m1(z)>Σ∆ξ∆ξm1(z) + Σ∆v∆ξm1(z)

)
×B−1

∆W̃g∆W̃
(z, z)B

∆W̃g∆W̃g
(z, z)B−1

∆W̃g∆W̃
(z, z)

)
(A.27)

In order to show that, we check the Lyapunov condition. As the reader can appreciate, the

Assumption 4.1 states that the variables are i.i.d. in i but not in t, so we have independent random

variables heterogeneously distributed. To overcome this situation we can define λ∗n,i = T−1/2
∑

it λit,

which means that λ∗n,i is an independent random variable for T fixed. Therefore, in order to prove

(A.27) we focus on the asymptotic normality of the local constant IV estimator (3.5) and we can

write √
N |H2|(NT )−1

∑
it

KitKi(t−1)∆W̃g,it

(
∆vit + ∆ξ>itm1(z)

)
=

1√
NT

∑
it

λit, (A.28)

where

λit = KitKi(t−1)∆W̃g,it

(
∆vit + ∆ξ>itm1(z)

)
|H2|1/2, i = 1, · · · , N ; t = 2, · · · , T.

By Theorem 4.1 and previous proofs, we can state that as H2 → 0

V ar(λit) = 2R(Ku)R(Kv)
(
σ2
v +m1(z)>Σ∆ξ∆ξm1(z)

)
B−1

∆W̃g∆W̃
(z, z)B

∆W̃g∆W̃g
(z, z)

×B−1

∆W̃g∆W̃
(z, z)(1 + op(1)),

Cov(λi1, λit) = R(Ku)R(Kv)Σ∆v∆ξm1(z)B−1

∆W̃g∆W̃
(z, z)B

∆W̃g∆W̃g
(z, z)B−1

∆W̃g∆W̃
(z, z)(1 + op(1)),

and by the Minkowski inequality we get

E|λ∗n,i|2+δ ≤ CT−(2+δ)E|λit|2+δ.

In this way, λit can be split up into two components; i.e., λ1it and λ2it. Analyzing separately each

of these terms,

E|λ1it|2+δ ≤ |H2|(2+δ)/2E|KitKi(t−1)∆W̃g,it∆vit|2+δ

= |H2|−δ/2
∫
E
(
|∆W̃g,it∆vit|2+δ|Zit = z +H

1/2
2 u, Zi(t−1) = z +H

1/2
2 v

)
× fZit,Zi(t−1)

(z +H
1/2
2 u, z +H

1/2
2 v)K2+δ(u)K2+δ(v)dudv

= |H2|−δ/2E
(
|∆W̃g,it∆vit|2+δ|Zit = z, Zi(t−1) = z

)
fZit,Zi(t−1)

(z, z)

×
∫
K2+δ(u)K2+δ(v)dudv + op(|H2|−δ/2).
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Similarly,

E|λ2it|2+δ ≤ |H2|(2+δ)/2E|KitKi(t−1)∆W̃g,itm1(z)>∆ξit|2+δ

= |H2|1+δ/2E
[
E
(
|∆W̃g,itm1(z)>∆ξit|2+δ|Zit, Zi(t−1)

)
K2+δ
it K2+δ

i(t−1)

]
= |H2|−δ/2E

(
|∆W̃g,it∆ξ

>
it |2+δ|Zit = z, Zi(t−1) = z

)
m1(z)2+δfZit,Zi(t−1)

(z, z)

×
∫
K2+δ(u)K2+δ(v)dudv + op(|H2|−δ/2)

and

E|λ1itλ
>
2it|1+δ/2 ≤ |H2|(2+δ)/2E|K2

itK
2
i(t−1)∆W̃g,it∆vit∆ξ

>
itm1(z)∆W̃>g,it|1+δ/2

= −|H2|1+δ/2E
[
E
(
|∆W̃g,it∆W̃

>
g,it∆vit∆ξ

>
it |1+δ/2|Zit, Zi(t−1)

)
m1(z)(1+δ/2)K2+δ

it K2+δ
i(t−1)

]
= −|H2|1+δ/2E

(
|∆W̃g,it∆W̃

>
g,it∆vit∆ξ

>
it |1+δ/2|Zit = z, Zi(t−1) = z

)
m1(z)(1+δ/2)

× fZit,Zi(t−1)
(z, z)

∫
K2+δ(u)K2+δ(v)dudv + op(|H2|−δ/2).

Then, it is proved that

E|λn,i|2+δ = E

∣∣∣∣∣N−1/2
∑
i

λ∗n,i

∣∣∣∣∣
2+δ

≤ COp
(

(N |H2|)−δ/2
)

and, as N tends to infinity, N |H2| → ∞. Therefore, since the Lyapunov condition holds, we resort

to the Lyapunov Central Limit Theorem to verify (A.27) and the Lemma 8.2 is proved.

Finally, using the results of Lemmas 8.1 and 8.2 in (A.14) we get√
N |H2| (m̂ĝ(z;H2)−m(z)−B(z,H2))

d−−−→ N
(
0, 2R(Ku)R(Kv)

(
σ2
v +m1(z)>Σ∆ξ∆ξm1(z) + Σ∆v∆ξm1(z)

)
×B−1

∆W̃g∆W̃
(z, z)B

∆W̃g∆W̃g
(z, z)B−1

∆W̃g∆W̃
(z, z)

)
so the proof of Theorem 4.1 is done.

Proof of Theorem 5.1

The proof of this result follows the same lines as in the proof of Theorem 4.1. Remember that we

denoted

W̃>ĝ,it =
(
ĝ>it,i(t−1) U>it

)>
, W̃>g,i(t−1) =

(
g>it,i(t−1) U>i(t−1)

)>
as vectors of d× 1 dimension.

Proceeding as before, we define

m̂(1)
g (z;H4) =

(
N∑
i=1

T∑
t=2

KitẄg,itẄ
>
it

)> N∑
i=1

T∑
t=2

KitẄg,it∆Ỹ1it
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where now

Kit =
1

|H4|1/2
K
(
H
−1/2
4 (Zit − z)

)
and the one-step backfitting estimator can be written as

m̂
(1)
ĝ (z;H4) =

(
m̂

(1)
ĝ (z;H4)− m̂(1)

ĝ (z;H4)
)

+ m̂(1)
g (z;H4). (A.29)

Therefore, in order to prove Theorem 5.1 is necessary to show the results of the following Lemmas

8.3 and 8.4.

LEMMA 8.3 √
N |H4|1/2

(
m̂

(1)
ĝ (z;H4)− m̂(1)

g (z;H4)
)

= op(1), uniformly in z

To proof this lemma we follow the same line as in the proof of Lemma 8.1.

LEMMA 8.4√
N |H4|1/2

(
m̂(1)
g (z;H4)−m(z)−B(z;H4)

)
d−−−→ N

(
0, V (1)(z;H4)

)
,

where

B(z;H4) = µ2(Ku)

(
diagd

(
Df (z)H4

√
N |H4|1/2Dmr

(z)

)
ıdf
−1
Zit

(z) +
1

2
diagd

(
tr

(
Hmr

(z)H4

√
N |H4|1/2

))
ıd

)
,

V (1)(z;H4) = 2R(Ku)
(
σ2
v +m1(z)>Σ∆ξ∆ξm1(z) + Σv∆ξm1(z)

)
B−1

W̃gW̃
(z)B

W̃gW̃g
(z)B−1

W̃gW̃
(z).

Proof of Lemma 8.4.

In order to show the results of Lemma 8.4 we need to prove the asymptotic behavior of (A.29). To

this end, we first focus on the asymptotic bias of the one-step backfitting estimator and later on

the corresponding variance. Using the results of Lemma 8.3 we know that the first element of the

right-hand side is asymptotically cancel so we focus on the second one.

After substituting Wit = g(Xit)+ζi+ξit the Taylor’s approximation of the smooth functions implies

∆Ŷ1it = W̃>itm(z) +
(
W̃it ⊗ (Zit − z)

)>
Dm(z) +

1

2
W̃>it ⊗ (Zit − z)>Hm(z)(Zit − z)

+W̃>i(t−1)

(
m̂ĝ(Zi(t−1);H2)−m(Zi(t−1))

)
+
(
α̂(Zi(t−1);H3)− α(Zi(t−1))

)
− (α̂(Zit;H3)− α(Zit)) + ∆vit + ξ>itm1(z) + op(1), (A.30)

let Dm(z), Hm(z) and W̃>it ⊗ (Zit − z)>Hm(z)(Zit − z) are defined in (A.12).

Combining (A.29) with (A.30) and substituting Wit = g(Xit) + ζi + ξit we can write m̂
(1)
g (z;H4) as

m̂(1)
g (z;H4)−m(z) =

(
N∑
i=1

T∑
t=2

KitW̃g,itW̃
>
it

)−1 N∑
i=1

T∑
t=2

KitW̃g,it

(
G

(1)
it +Qit + ∆vit + ∆ξ>itm1(z)

)
(A.31)
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where now Kit = |H4|−1/2K
(
H
−1/2
4 (Zit − z)

)
,

G
(1)
it =

(
W̃it ⊗ (Zit − z)

)>
Dm(z) +

1

2

(
W̃it ⊗ (Zit − z)

)>
Hm(z)(Zit − z)−∆ξ>itm1(z),

Qit = W̃>i(t−1)

(
m̂ĝ(Zi(t−1);H2)−m(Zi(t−1))

)
− (α̂(Zit;H3)− α(Zit)) +

(
α̂(Zi(t−1);H3)− α(Zi(t−1))

)
.

For the sake of simplicity, let us denote

m̂(1)
g (z;H4)−m(z) = S̃−1

n1

(
B̃n1 + M̃n1 + Ũn1 + R̃n1

)
, (A.32)

where

B̃n1 = (NT )−1
∑

itKitW̃g,itG
(1)
it , M̃n1 = (NT )−1

∑
itKitW̃g,itQit,

Ũn1 = (NT )−1
∑

itKit∆W̃g,it∆vit, R̃n1 = (NT )−1
∑

itKitW̃g,it∆ξ
>
itm1(z),

S̈n1 = (NT )−1
∑

itKitW̃g,itW̃
>
it .

Therefore, to complete the proof of this lemma we have to show√
N |H4|1/2

(
m̂(1)
g (z;H4)−m(z)

)
−
√
N |H4|S̃−1

n1
(B̃n1 + M̃n1) =

√
N |H4|1/2S̃−1

n1

(
Ũn1 + R̃n1

)
. (A.33)

To obtain the bias term we first focus on the inverse term of (A.33) and later we analyze the behavior

of B̃n1 and M̃n1 . Then, following the same reasoning as in (A.3), we can show that as N tends to

infinity

S̃−1
n1

= B−1

W̃gW̃
(z) + op(‖H1/2

4 ‖), (A.34)

since

S̃n1 = E
[
KitW̃g,itW̃

>
it

]
= B

W̃gW̃
(z) + op(1),

where

B
W̃gW̃

(z) = E
[
W̃g,itW̃

>
it |Zit = z

]
fZit(z).

Focus now on B̈n we can split it up into three terms, i.e.

B̃n1 = (NT )−1
∑
it

KitW̃g,itG
(1)
it = B̃(1)

n1
+ B̃(2)

n1
− B̃(3)

n1
, (A.35)

where

B̃(1)
n1

= (NT )−1
∑
it

KitW̃g,it(W̃it ⊗ (Zit − z))>Dm(z),

B̃(2)
n1

= (2NT )−1
∑
it

KitW̃g,it(W̃it ⊗ (Zit − z))>Hm(z)(Zit − z),

B̃(3)
n1

= (NT )−1
∑
it

KitW̃g,it∆ξ
>
itm1(z).
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Analyzing each of these terms separately we obtain that under standard properties of kernel density

estimators, under the assumptions of Theorem 5.1 and as N →∞,

E(B̃(1)
n1

) = E
[
KitE(W̃g,itW̃

>
it |Zit)⊗ (Zit − z)>Dm(z)

]
= µ2(Ku)B

W̃gW̃
(z, z)diagd (Df (z)tr(H4Dmr(z))) ıdf

−1
Zit

(z) + op(tr(H4)), (A.36)

E(B̃(2)
n1

) =
1

2
E
[
KitE(W̃g,itW̃

>
it |Zit)⊗ (Zit − z)>Hmr(z)(Zit − z)

]
=

1

2
µ2(Ku)B

W̃gW̃
(z)diagd (tr(Hmr(z)H4)) ıd + op(tr(H4)), (A.37)

whereas under similar reasoning it is straightforward to show E(B̃
(3)
n1 ) = op(1). Also, assuming

H4 → 0 and N |H4|1/2 →∞ it is easy to prove that any component of the variance of B̃n1 converge

to zero.

To complete the proof of the asymptotic bias we have to analyze M̃n1 . Under assumptions of

Theorem 4.1 we have proved that the bias rate of m̂ĝ(z;H2) is op(tr(H2)), whereas in Qian and

Wang (2012) is shown that this rate is op(tr(H3)) for α̂(z1;H3). Following Masry (1996), under

Assumptions 4.11 and 5.1 these rates are uniform in z and z1, respectively, so under the same

reasoning as the proof of Lemma 8.1 it is straightforward to show that as N tends to infinity

E(M̃n1) = E
[
KitW̃g,it

(
W̃>i(t−1)(m̂ĝ(z;H2)−m(z;H2))− (α̂(z1;H3)− α(z1)) + (α̂(z2;H3)− α(z2))

)]
= op(tr(H2)) + op(tr(H3)) + op(tr(H3)), (A.38)

since (NT )−1
∑

it |KitW̃g,itW̃
>
i(t−1)| = Op(1) and (NT )−1

∑
it |KitW̃g,it| = Op(1).

Then, using the fact that tr(H2) → 0, tr(H3) → 0 and tr(H2) → 0 in the sense that N |H2| → ∞,

N |H3| → ∞ and N |H4| → ∞, if we substitute the asymptotic results of (A.34) and (A.36)-(A.38)

into the second term of (A.32) by the Cramer-Wold device we get the following expression for the

bias of the one-step backfitting estimator

S̃−1
n1

(B̃n1 + M̃n1) = µ2(Ku)

(
diagd (Df (z)H4Dmr(z)) ıdf

−1
Zit

(z) +
1

2
diagd (tr(Hmr(z)H4)) ıd

)
+ op(tr(H4)). (A.39)

Therefore, it is proved that the bias rate of the one-step backfitting estimator (5.5) is the same as

the corresponding of the local constant IV estimator (3.5), as we expected.

Focus now on the asymptotic variance we have that under assumptions of Theorem 5.1 and by the

law of iterated expectations we obtain

N |H4|1/2V ar(Ũn1) = |H4|1/2(NT )−1
∑
ii′

∑
tt′

E
[
W̃g,itW̃

>
g,i′t′∆vit∆vi′t′KitKi′t′

]
= 2σ2

vR(Ku)B
W̃gW̃g

(z)(1 + op(1)), (A.40)

where

B
W̃gW̃g

(z) = E
[
W̃g,itW̃

>
g,it|Zit = z

]
fZit(z).

39



Also, denote Σ∆ξ∆ξ = E(∆ξit∆ξ
>
it ) a (M − 1) × (M − 1) matrix and Σb1∆v∆ξ

= E(∆vit∆ξ
>
it ) as a

1× (M − 1) vector we get that as N →∞,

N |H4|1/2V ar(R̃n1) = |H4|1/2(NT )−1
∑
ii′

∑
tt′

E
[
W̃g,itm1(z)>∆ξit∆ξ

>
i′t′m1(z)W̃>g,i′t′KitKi′t′

]
= 2R(Ku)B

W̃gW̃g
(z)m1(z)>Σ∆ξ∆ξm1(z)(1 + op(1)), (A.41)

and

N |H4|1/2Cov(Ũn1 , R̃n1) = |H4|1/2(NT )−1
∑
ii′

∑
tt′

E
[
W̃g,it∆vit∆ξ

>
i′t′m1(z)W̃>g,i′t′KitKi′t′

]
= R(Ku)B

W̃gW̃g
(z)Σ∆v∆ξm1(z)(1 + op(1)). (A.42)

Then, substituting (A.33) and (A.39)-(A.41) into the right-hand side of (A.32) and by the Cramer-

Wold device we obtain that as N |H4| → ∞,

N |H4|V ar(S̃−1
n1

(Ũn1 + R̃n1)) = 2R(Ku)
(
σ2
v +m1(z)>Σ∆ξ∆ξm1(z) + Σ∆v∆ξm1(z)

)
×B−1

W̃gW̃
(z)B

W̃gW̃g
(z)B−1

W̃gW̃
(z). (A.43)

Finally, to prove the asymptotic normality of the one-step backfitting estimator (5.5) is necessary

to check the Lyapunov condition. For it, we can write√
N |H4|1/2(NT )−1

∑
it

KitW̃g,it

(
∆vit + ∆ξ>itm1(z)

)
=

1√
NT

∑
it

λb1it , (A.44)

where λb1it = KitW̃g,it

(
∆vit∆ξ

>
itm1(z)

)
|H4|1/2. Then, following the same structure as in the proof

of Theorem 4.1 and by Assumption 5.2√
N |H4|1/2

(
n̂(1)
g (z;H4)−m(z)−B(z,H4)

)
d−−−→ (A.45)

N
(

0, 2R(Ku)
(
σ2
v +m1(z)>Σ∆ξ∆ξm1(z) + Σ∆v∆ξm1(z)

)
B−1

W̃gW̃
(z)B

W̃gW̃g
(z)B−1

W̃gW̃
(z)
)

and the proof is done.

Proof of Theorem 5.2

By substracting in both terms of (5.9) the quantity m (z) and noting that G−1 (J1 + J2) = I we

obtain √
N |H4|1/2 (m̃ (z;H4)−m (z)) = G−1J1

√
N |H4|1/2

(
m̂

(1)
ĝ (z;H4)−m (z)

)
+ G−1J2

√
N |H4|1/2

(
m̂

(2)
ĝ (z;H4)−m (z)

)
, (A.46)

where for the sake of simplicity,

G = Ω(1)
m11

+ 2Ω(1)
m21

+ Ω(1)
m22

, (A.47)

J1 = Ω(1)
m11

+ Ω(1)
m21

, (A.48)

J2 = Ω(1)
m12

+ Ω(1)
m22

. (A.49)
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If we can prove that Ωm12 = o (1), as N tends to infinity, applying Theorem 4.1 and Theorem A

(Serfling (1980), p. 122) the desired result is shown.

Now we prove that Ωm12 = o (1), as N tends to infinity. If we combine the righthand side of (A.32)

for m̂
(1)
ĝ (z;H4) with the corresponding expression for m̂

(2)
ĝ (z;H4) we obtain that

Ωm12 = N |H4|1/2Cov
(
S̃n1

(
Ũn1 + R̃n1

)
,−S̃n2

(
Ũn2 + R̃n2

))
, (A.50)

where for Kit = |H4|−1/2K
(
H
−1/2
4 (Zit − z)

)
and Ki(t−1) = |H4|−1/2K

(
H
−1/2
4 (Zi(t−1) − z)

)
,

S̃n2 = (NT )−1
∑

itKi(t−1)W̃g,i(t−1)W̃
>
i(t−1), Ũn2 = −(NT )−1

∑
itKi(t−1)W̃g,i(t−1)∆vit,

R̈n2 = −(NT )−1
∑

itKi(t−1)W̃g,i(t−1)∆ξ
>
itm1(z).

If we focus on the middle term of (A.50), under assumptions of Theorem 5.1 we can prove that by

the law of iterated expectations,

N |H4|1/2Cov(Ũn1 , Ũn2) = −|H4|1/2(NT )−1
∑
it

E
[
KitKi(t−1)W̃g,it∆v

2
itW̃

>
g,i(t−1)

]
= −2σ2

v |H4|1/2BW̃gW̃g−1
(z, z)(1 + op(1)), (A.51)

N |H4|1/2Cov(Ũn1 , R̃n2) = |H4|1/2(NT )−1
∑
it

E
[
KitKi(t−1)W̃g,it∆vitm1(z)>∆ξitW̃

>
g,i(t−1)

]
= |H4|1/2BW̃gW̃g−1

(z, z)Σ∆v∆ξm1(z)(1 + op(1)), (A.52)

where

B
W̃gW̃g−1

(z, z) = E
[
W̃g,itW̃

>
g,i(t−1)|Zit = z, Z(t−1) = z

]
fZit,Zi(t−1)

(z, z).

Similarly,

N |H4|1/2Cov(R̃n1 , R̃n2) = |H4|1/2(NT )−1
∑
it

E
[
KitKi(t−1)W̃g,it∆ξ

>
itm1(z)m1(z)>∆ξitW̃

>
g,i(t−1)

]
= |H4|1/2BW̃gW̃g−1

(z, z)m1(z)>Σ∆ξ∆ξm1(z)(1 + op(1)). (A.53)

In addition, under the same reasoning as in (A.34)

S̈−1
n2

= B−1

W̃g−1W̃−1
(z) + op(‖H1/2

4 ‖), (A.54)

where

B
W̃g−1W̃−1

(z) = E
[
W̃g,i(t−1)W̃

>
i(t−1)|Zi(t−1) = z

]
fZi(t−1)

(z).

If we substitute (A.34) and (A.51)-(A.54) into (A.50) and by the Cramer-Wold device we obtain

that as N →∞

Ωm12 = |H4|1/2
(

2σ2
v −m1(z)>Σ∆ξ∆ξm1(z)

)
B−1

W̃gW̃
(z)B

W̃gW̃g−1
(z, z)B−1

W̃g−1W̃−1
(z)(1 + op(1)).

And the proof is done.
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